170
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Can spatialisation be extended to episodic memory and open sets?

, , &
Pages 922-935 | Received 07 Apr 2017, Accepted 09 Jan 2018, Published online: 29 Jan 2018

References

  • Abrahamse, E., van Dijck, J.-P., & Fias, W. (2017). Grounding verbal working memory: The case of serial order. Current Directions in Psychological Science, 26(5), 429–433. doi: 10.1177/0963721417704404
  • Allen, R. J., Havelka, J., Falcon, T., Evans, S., & Darling, S. (2015). Modality specificity and integration in working memory: Insights from visuospatial bootstrapping. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 820–830.
  • Anderson, J. R., Reder, L. M., & Lebiere, C. (1996). Working memory: Activation limitations on retrieval. Cognitive Psychology, 30(3), 221–256. doi: 10.1006/cogp.1996.0007
  • Antoine, S., Ranzini, M., Gebuis, T., van Dijck, J.-P., & Gevers, W. (2017). Order information in verbal working memory shifts the subjective midpoint in both the line bisection and the landmark tasks. The Quarterly Journal of Experimental Psychology, 70(10), 1973–1983. doi: 10.1080/17470218.2016.1217246
  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. doi: 10.1016/S1364-6613(00)01538-2
  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. doi: 10.1038/nrn1201
  • Baddeley, A. D., Allen, R. J., & Hitch, G. J. (2011). Binding in visual working memory: The role of the episodic buffer. Neuropsychologia, 49(6), 1393–1400. doi: 10.1016/j.neuropsychologia.2010.12.042
  • Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89. doi: 10.1016/S0079-7421(08)60452-1
  • Bao, M., Li, Z.-H., & Zhang, D.-R. (2007). Binding facilitates attention switching within working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 959–969.
  • Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133, 83–100. doi: 10.1037/0096-3445.133.1.83
  • Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 570–585.
  • Barrouillet, P., & Camos, V. (2012). As time goes by: Temporal constraints in working memory. Current Directions in Psychological Science, 21(6), 413–419. doi: 10.1177/0963721412459513
  • Bavelier, D., Newport, E. L., Hall, M., Supalla, T., & Boutla, M. (2008). Ordered short-term memory differs in signers and speakers: Implications for models of short-term memory. Cognition, 107(2), 433–459. doi: 10.1016/j.cognition.2007.10.012
  • Bottini, R., Mattioni, S., & Collignon, O. (2016). Early blindness alters the spatial organization of verbal working memory. Cortex, 83, 271–279. doi: 10.1016/j.cortex.2016.08.007
  • Burgess, N., & Hitch, G. J. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106(3), 551–581. doi: 10.1037/0033-295X.106.3.551
  • Calia, C., Darling, S., Allen, R. J., & Havelka, J. (2015). Visuospatial bootstrapping: Aging and the facilitation of verbal memory by spatial displays. Archives of Scientific Psychology, 3(1), 74–81. doi: 10.1037/arc0000019
  • Cave, C. B., & Squire, L. R. (1992). Intact verbal and nonverbal short-term memory following damage to the human hippocampus . Hippocampus, 2, 151–163. doi: 10.1002/hipo.450020207
  • Collette, F., Hogge, M., Salmon, E., & Van Der Linden, M. (2006). Exploration of the neural substrates of executive functioning by functional neuroimaging. Neuroscience, 139, 209–221. doi: 10.1016/j.neuroscience.2005.05.035
  • Cowan, N. (1995). Attention and memory: An integrated framework. London: Oxford University Press.
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi: 10.1017/S0140525X01003922
  • Cowan, N. (2005). Working memory capacity. Hove: Psychology Press.
  • Cowan, N. (1999). An embedded-process model of working memory Models of working memory: Mechanisms of active maintenance and executive control. In Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). New York: Cambridge University Press.
  • Craik, F. I., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104(3), 268–294. doi: 10.1037/0096-3445.104.3.268
  • Darling, S., Allen, R. J., Havelka, J., Campbell, A., & Rattray, E. (2012). Visuospatial bootstrapping: Long-term memory representations are necessary for implicit binding of verbal and visuospatial working memory. Psychonomic Bulletin & Review, 19(2), 258–263. doi: 10.3758/s13423-011-0197-3
  • Darling, S., Allen, R. J., & Havelka, J. (2017). Visuospatial bootstrapping: When visuospatial and verbal memory work together. Current Directions in Psychological Science, 26(1), 3–9. doi: 10.1177/0963721416665342
  • Darling, S., & Havelka, J. (2010). Visuospatial bootstrapping: Evidence for binding of verbal and spatial information in working memory. The Quarterly Journal of Experimental Psychology, 63(2), 239–245. doi: 10.1080/17470210903348605
  • Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16(6), 693–700. doi: 10.1016/j.conb.2006.10.012
  • Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005). The demise of short-term memory revisited: Empirical and computational investigations of recency effects. Psychological Review, 112(1), 3–42. doi: 10.1037/0033-295X.112.1.3
  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. doi: 10.1037/0096-3445.122.3.371
  • Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic word recognition. Psychological Review, 108(2), 452–478. doi: 10.1037/0033-295X.108.2.452
  • D’Esposito, M. (2001). Working memory. In R. Cabeza & A. Kingstone (Eds.), Handbook of functional neuroimaging of cognition (2nd ed., pp. 292–327). Cambridge, MA: MIT Press.
  • Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11(9), 379–386. doi: 10.1016/j.tics.2007.08.001
  • Dixon, P. (2017). Episodic retrieval and the SNARC effect. Psychonomic Bulletin & Review, 24(6), 1943–1948. doi: 10.3758/s13423-017-1253-4
  • Ebbinghaus, H. (1902). Grundzüge der psychologie. Leipzig: Veit & Co.
  • Eichenbaum, H. (2006). Remembering: Functional organization of the declarative memory system. Current Biology, 16(16), R643–R645. doi: 10.1016/j.cub.2006.07.026
  • Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. doi: 10.1146/annurev.neuro.30.051606.094328
  • Engle, R. W, & Kane, M. J. (2004). Executive Attention, Working Memory Capacity, and a Two-Factor Theory of Cognitive Control. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 44, pp. 145–199). New York: Elsevier Science.
  • Engle, R. W., & Kane, M. J. (2003). Executive attention, working memory capacity, and a two-factor theory of cognitive control. Psychology of Learning and Motivation, 44, 145–199. doi: 10.1016/S0079-7421(03)44005-X
  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245. doi: 10.1037/0033-295X.102.2.211
  • Faraco, C. C., Unsworth, N., Langley, J., Terry, D., Li, K., Zhang, D., … Miller, L. S. (2011). Complex span tasks and hippocampal recruitment during working memory. NeuroImage, 55(2), 773–787. doi: 10.1016/j.neuroimage.2010.12.033
  • Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2, 95–110. doi: 10.1080/135467996387552
  • Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87(3), B87–B95. doi: 10.1016/S0010-0277(02)00234-2
  • Ginsburg, V., Archambeau, K., van Dijck, J.-P., Chetail, F. & Gevers, W. (2017). Coding of serial order in verbal, visual and spatial working memory. Journal of Experimental Psychology: General, 146(5), 632–650. doi: 10.1037/xge0000278
  • Ginsburg, V., van Dijck, J.-P., Previtali, P., Fias, W. & Gevers, W. (2014). The impact of verbal working memory on number-space associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 976–986.
  • Guida, A., Gobet, F., Tardieu, H., & Nicolas, S. (2012). How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: A two-stage framework. Brain and Cognition, 79(3), 221–244. doi: 10.1016/j.bandc.2012.01.010
  • Guida, A., Gras, D., Noel, Y., Le Bohec, O., Quaireau, C., & Nicolas, S. (2013). The effect of long-term working memory through personalization applied to free recall: Uncurbing the primacy-effect enthusiasm. Memory & Cognition, 41(4), 571–587. doi: 10.3758/s13421-012-0284-3
  • Guida, A., & Lavielle-Guida, M. (2014). 2011 space odyssey: Spatialization as a mechanism to code order allows a close encounter between memory expertise and classic immediate memory studies. Frontiers in Psychology, 5, 728. doi: 10.3389/fpsyg.2014.00573
  • Guida, A., Leroux, A., Lavielle-Guida, M., & Noël, Y. (2016). A SPoARC in the dark: Spatialization in verbal immediate memory. Cognitive Science, 40, 2108–2121. doi: 10.1111/cogs.12316
  • Guida, A., van Dijck, J.-P., & Abrahamse, E. (2017). Distinctiveness as a function of spatial expansion in verbal working memory: Comment on Kreitz, Furley, Memmert, and Simons (2015). Psychological Research, 81(3), 690–695. doi: 10.1007/s00426-016-0765-2
  • Hales, S. D. (2005). Thinking tools: You can prove a negative. Think, 4(10), 109–112. doi: 10.1017/S1477175600001287
  • Henson, Richard N. A. (1998). Short-Term Memory for Serial Order: The Start-End Model. Cognitive Psychology, 36(2), 73–137. http://dx.doi.org/10.1006/cogp.1998.0685
  • Henson, R. N. A. (1999). Coding position in short-term memory. International Journal of Psychology, 34, 403–409. doi: 10.1080/002075999399756
  • Huber, S., Klein, E., Moeller, K., & Willmes, K. (2016). Spatial–numerical and ordinal positional associations coexist in parallel. Frontiers in Psychology, 7, 438. doi: 10.3389/fpsyg.2016.00438
  • Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140, 339–373. doi: 10.1037/a0034221
  • Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32(4), 662–673. doi: 10.3758/BF03195857
  • JASP, Team. (2017). JASP (Version 0.8.2) Computer software.
  • Jeffreys, H. (1961). Theory of probability. New York, NY: Oxford University Press.
  • Johnson, M. K. (1992). MEM: Mechanisms of recollection. Journal of Cognitive Neuroscience, 4, 268–280. doi: 10.1162/jocn.1992.4.3.268
  • Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122–149. doi: 10.1037/0033-295X.99.1.122
  • Kahana, M. J., Mollison, M. V., & Addis, K. M. (2010). Positional cues in serial learning: The spin-list technique. Memory & Cognition, 38(1), 92–101. doi: 10.3758/MC.38.1.92
  • Kane, M.J., Hambrick, D.Z., Tuholski, S.W., Wilhelm, O., Payne, T.W., & Engle, R.W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189–217. doi: 10.1037/0096-3445.133.2.189
  • Krueger, J. (2001). Null hypothesis significance testing: On the survival of a flawed method. American Psychologist, 56(1), 16–26. doi: 10.1037/0003-066X.56.1.16
  • Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and stan. Academic Press.
  • Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the four-sources model. The Journal of General Psychology, 120, 375–405. doi: 10.1080/00221309.1993.9711154
  • Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course. Cambridge: Cambridge University Press.
  • Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. Psychology of Learning and Motivation, 49, 1–48. doi: 10.1016/S0079-7421(08)00001-7
  • Loaiza, V. M., McCabe, D. P., Youngblood, J. L., Rose, N. S. & Myerson, J. (2011). The influence of levels of processing on recall from working memory and delayed recall tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(5), 1258–1263.
  • Lorch, R. F., & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 149–157.
  • Manning, J. R., Norman, K., & Kahana, M. (2014). The role of context in episodic memory. In M. Gazzaniga (Ed.), The Cognitive Neurosciences (5 Vol., pp. 557–566). : MIT Press.
  • Marshuetz, C. (2005). Order information in working memory: An integrative review of evidence from brain and behavior. Psychological Bulletin, 131, 323–339. doi: 10.1037/0033-2909.131.3.323
  • Mate, J., Allen, R. J., & Baqués, J. (2012). What you say matters: Exploring visual–verbal interactions in visual working memory. Quarterly Journal of Experimental Psychology, 65(3), 395–400. doi: 10.1080/17470218.2011.644798
  • Mathy, F., & Feldman, J. (2012). What’s magic about magic numbers? Chunking and data compression in short-term memory. Cognition, 122(3), 346–362. doi: 10.1016/j.cognition.2011.11.003
  • McCabe, D. P. (2008). The role of covert retrieval in working memory span tasks: Evidence from delayed recall tests. Journal of Memory and Language, 58(2), 480–494. doi: 10.1016/j.jml.2007.04.004
  • Morey, C. C. (2009). Integrated cross-domain object storage in working memory: Evidence from a verbal–spatial memory task. Quarterly Journal of Experimental Psychology, 62(11), 2235–2251. doi: 10.1080/17470210902763382
  • Morey, C. C. (2011). Maintaining binding in working memory: Comparing the effects of intentional goals and incidental affordances. Consciousness and Cognition, 20(3), 920–927. doi: 10.1016/j.concog.2010.12.013
  • Morey, C. C., & Cowan, N. (2004). When visual and verbal memories compete: Evidence of cross-domain limits in working memory. Psychonomic Bulletin & Review, 11, 296–301. doi: 10.3758/BF03196573
  • Morey, C. C. & Cowan, N. (2005). When do visual and verbal memory conflict? The importance of working memory load and retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 703–713.
  • Morey, R. D., & Rouder, J. N. (2015). Bayes factor 0.9.11-1. Comprehensive R Archive Network.
  • Morin, C., Brown, G. D. A., & Lewandowsky, S. (2010). Temporal isolation effects in recognition and serial recall. Memory & Cognition, 38(7), 849–859. doi: 10.3758/MC.38.7.849
  • Müller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139(1), 51–58. doi: 10.1016/j.neuroscience.2005.09.018
  • Nichols, E. A., Kao, Y.-C., Verfaellie, M., & Gabrieli, J. D. E. (2006). Working memory and long-term memory for faces: Evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus, 16, 604–616. doi: 10.1002/hipo.20190
  • Nuerk, H. C, Wood, G, & Willmes, K. (2005). The universal SNARC effect: The association between number magnitude and space is amodal. Experimental psychology, 52(3), 187–194. doi: 10.1027/1618-3169.52.3.187
  • Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411–421.
  • Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation, 51, 45–100. doi: 10.1016/S0079-7421(09)51002-X
  • Oberauer, K., & Lewandowsky, S. (2008). Forgetting in immediate serial recall: Decay, temporal distinctiveness, or interference?? Psychological Review, 115(3), 544–576. doi: 10.1037/0033-295X.115.3.544
  • Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19(5), 779–819. doi: 10.3758/s13423-012-0272-4
  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W.W. (2003). The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence, 31, 167–193. doi: 10.1016/S0160-2896(02)00115-0
  • Osth, A. F., & Dennis, S. (2015). Prior-list intrusions in serial recall are positional. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1893–1901.
  • Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116(1), 129–156. doi: 10.1037/a0014420
  • Portrat, S., Barrouillet, P., & Camos, V. (2008). Time-related decay or interference-based forgetting in working memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1561–1564.
  • Portrat, S., Camos, V., & Barrouillet, P. (2009). Working memory in children: A time-constrained functioning similar to adults. Journal of Experimental Child Psychology, 102, 368–374. doi: 10.1016/j.jecp.2008.05.005
  • Portrat, S., Guida, A., Phénix, T., & Lemaire, B. (2016). Promoting the experimental dialogue between working memory and chunking: Behavioral data and simulation. Memory & Cognition, 44(3), 420–434. doi: 10.3758/s13421-015-0572-9
  • Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontallobe. Nature Neuroscience, 3, 85–90. doi: 10.1038/71156
  • Previtali, P., Hevia, M. D., & Girelli, L. (2010). Placing order in space: The SNARC effect in serial learning. Experimental Brain Research, 201(3), 599–605. doi: 10.1007/s00221-009-2063-3
  • Quak, M., London, R. E., & Talsma, D. (2015). A multisensory perspective of working memory. Frontiers in Human Neuroscience, 9, 197. doi: 10.3389/fnhum.2015.00197
  • Ranganath, C., & Blumenfeld, R. S. (2005). Doubts about double dissociations between short- and long-term memory. Trends in Cognitive Sciences, 9, 374–380. doi: 10.1016/j.tics.2005.06.009
  • Ranganath, C., & D’Esposito, M. (b932005). Directing the mind’s eye: Prefrontal, inferior and medial temporal mechanisms for visual working memory. Current Opinion in Neurobiology, 15, 175–182. doi: 10.1016/j.conb.2005.03.017
  • Rinaldi, L., Brugger, P., Bockisch, C. J., Bertolini, G., & Girelli, L. (2015). Keeping an eye on serial order: Ocular movements bind space and time. Cognition, 142, 291–298. doi: 10.1016/j.cognition.2015.05.022
  • Rose, N. S., Buchsbaum, B. R. & Craik, F. I. (2014). Short-term retention of a single word relies on retrieval from long-term memory when both rehearsal and refreshing are disrupted. Memory & Cognition, 42(5), 689–700. Springer. doi: 10.3758/s13421-014-0398-x
  • Rose, N. S. & Craik, F. I. M. (2012). A processing approach to the working memory/long-term memory distinction: Evidence from the levels-of-processing span task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(4), 1019–1029.
  • Rose, N. S., Myerson, J., RoedigerIII, H. L. & Hale, S. (2010). Similarities and differences between working memory and long-term memory: Evidence from the levels-of-processing span task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(2), 471–483.
  • Rose, N. S., Olsen, R. K., Craik, F. I., & Rosenbaum, R. S. (2012). Working memory and amnesia: The role of stimulus novelty. Neuropsychologia, 50(1), 11–18. doi: 10.1016/j.neuropsychologia.2011.10.016
  • Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374. doi: 10.1016/j.jmp.2012.08.001
  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User’s guide. Psychology Software.
  • Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20, 11–21. doi: 10.1136/jnnp.20.1.11
  • Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008). A context-based theory of recency and contiguity in free recall. Psychological Review, 115(4), 893–912. doi: 10.1037/a0013396
  • Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A neuropsychological study. Quarterly Journal of Experimental Psychology, 22(2), 261–273. doi: 10.1080/00335557043000203
  • Shankar, K. H., & Howard, M. W. (2012). A scale-invariant internal representation of time. Neural Computation, 24(1), 134–193. doi: 10.1162/NECO_a_00212
  • Souza, A. S. & Oberauer, K. (2017). Time to process information in working memory improves episodic memory. Journal of Memory and Language, 96, 155–167. doi: 10.1016/j.jml.2017.07.002
  • Spurgeon, J., Ward, G., Matthews, W. J., & Farrell, S. (2015). Can the effects of temporal grouping explain the similarities and differences between free recall and serial recall? Memory & Cognition, 43(3), 469–488. doi: 10.3758/s13421-014-0471-5
  • Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306. doi: 10.1146/annurev.neuro.27.070203.144130
  • Staresina, B. P., & Davachi, L. (2006). Differential encoding mechanisms for subsequent associative recognition and free recall. Journal of Neuroscience, 26(36), 9162–9172. doi: 10.1523/JNEUROSCI.2877-06.2006
  • Streiner, D. L. (2003). Unicorns Do exist: A tutorial on “proving” the null hypothesis. The Canadian Journal of Psychiatry, 48(11), 756–761. doi: 10.1177/070674370304801108
  • Suzuki, W. A., & Amaral, D. G. (2004). Functional neuroanatomy of the medial temporal lobe memory system. Cortex, 40(1), 220–222. doi: 10.1016/S0010-9452(08)70958-4
  • Thomson, D. M., & Tulving, E. (1970). Associative encoding and retrieval: Weak and strong cues. Journal of Experimental Psychology, 86(2), 255–262. doi: 10.1037/h0029997
  • Tulving, E. (1985). Elements of episodic memory. Oxford: Oxford University Press.
  • Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373. doi: 10.1037/h0020071
  • Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104–132. doi: 10.1037/0033-295X.114.1.104
  • van Dijck, J. P., Abrahamse, E. L., Majerus, S., & Fias, W. (2013). Spatial attention interacts with serial-order retrieval from verbal working memory. Psychological Science, 24(9), 1854–1859. doi: 10.1177/0956797613479610
  • van Dijck, J.-P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114–119. doi: 10.1016/j.cognition.2010.12.013
  • Vergauwe, E., Barrouillet, P., & Camos, V. (2010). Do mental processes share a domain-general resource? Psychological Science, 21, 384–390. doi: 10.1177/0956797610361340
  • Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445–453. doi: 10.1016/j.tics.2005.07.001
  • Yates, F. A. (1966). The art of memory. Chicago: University of Chicago Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.