315
Views
3
CrossRef citations to date
0
Altmetric
Articles

Verbal cues flexibly transform spatial representations in human memory

& ORCID Icon
Pages 465-479 | Received 18 Apr 2018, Accepted 31 Aug 2018, Published online: 12 Sep 2018

References

  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. doi: 10.1016/j.tics.2012.06.010
  • Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O’Keefe, J., … Burgess, N. (2006). The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences, 17(1-2), 71–97.
  • Berens, P. (2009). Circstat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31(10), 1–21.
  • Bird, C. M., Capponi, C., King, J. A., Doeller, C. F., & Burgess, N. (2010). Establishing the boundaries: The hippocampal contribution to imagining scenes. The Journal of Neuroscience, 30(35).
  • Brunye, T. T., Gagnon, S. A., Waller, D., Hodgson, E., Tower-Richardi, S., & Taylor, H. A. (2012). Up north and down south: Implicit associations between topography and cardinal direction. Quarterly Journal of Experimental Psychology, 65(10), 1880–1894. doi: 10.1080/17470218.2012.663393
  • Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557.
  • Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625–641.
  • Chan, E., Baumann, O., Bellgrove, M. A., & Mattingly, J. B. (2013). Reference frames in allocentric representations are invariant across static and active encoding. Frontiers in Psychology, 4, 1–7.
  • Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149–178.
  • Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin and Review, 12(1), 1–23.
  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. doi: 10.1016/j.neuron.2008.04.017
  • Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. New York: Oxford University Press.
  • Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83(4), 764–770.
  • Ekstrom, A. D., Huffman, D. J., & Starrett, M. (2017). Interacting networks of brain regions underlie human spatial navigation: A review and novel synthesis of the literature. Journal of Neurophysiology, 118(6), 3328–3344. jn. 00531.02017.
  • Ekstrom, A. D., & Isham, E. A. (2017). Human spatial navigation: Representations across dimensions and scales. Current Opinion in Behavioral Sciences, 17, 84–89.
  • Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184–188.
  • Ekstrom, A. D., & Ranganath, C. (2017). Space, time and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 27, 9769. doi: 10.1002/hipo.22750
  • Epstein, R. A., DeYoe, E. A., Press, D. Z., Rosen, A. C., & Kanwisher, N. (2001). Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cognitive Neuropsychology, 18(6), 481–508.
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power program for the social, behavioral, and biomedical sciencesd. Behavior Research Methods, 39(2), 175–191.
  • Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., & Moser, M. B. (2004). Spatial representation in the entorhinal cortex. Science, 305(5688), 1258–1264.
  • Garling, T., Book, A., & Lindberg, E. (1984). Cognitive mapping of large-scale environments the interrelationship of action plans, acquisition, and orientation. Environment and Behavior, 16(1), 3–34.
  • Hermer-Vazquez, L., Spelke, E. S., & Katsnelson, A. S. (1999). Sources of flexibility in human cognition: Dual-task studies of space and language. Cognitive Psychology, 39(1), 3–36. doi: 10.1006/cogp.1998.0713
  • Igloi, K., Doeller, C. F., Berthoz, A., Rondi-Reig, L., & Burgess, N. (2010). Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proceedings of the National Academy of Sciences, 107(32), 14466–14471. doi: 10.1073/pnas.1004243107 [pii].
  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. doi: 10.1016/J.Cogpsych.2005.08.003
  • Lee, P. U., & Tversky, B. (2001). Costs of switching perspectives in route and survey descriptions. Proceedings of the twenty-third conference of the cognitive science society.
  • Lynch, K. (1960). The image of a city (Vol. 11). Cambridge, MA: MIT Press.
  • McNamara, T. P., Rump, B., & Werner, S. (2003). Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin and Review, 10(3), 589–595.
  • Meilinger, T., Riecke, B. E., & Bülthoff, H. H. (2014). Local and global reference frames for environmental spaces. Quarterly Journal of Experimental Psychology, 67(3), 542–569. doi: 10.1080/17470218.2013.821145
  • Meilinger, T., Strickrodt, M., & Bülthoff, H. H. (2016). Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition, 155, 77–95.
  • Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In M. J. Engenhofer, & R. G. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 143–154). New York: Oxford University Press.
  • Morey, R. D., & Rouder, J. N. (2015). Bayesfactor: Computation of Bayes factors for common designs. R Package Version 0.9, 9.
  • Morris, R., Hagan, J., & Rawlins, J. (1986). Allocentric spatial learning by hippocampectomised rats: A further test of the “spatial mapping” and “working memory” theories of hippocampal function. The Quarterly Journal of Experimental Psychology, 38(4), 365–395.
  • Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A., & Rosenbaum, R. S. (2006). The cognitive neuroscience of remote episodic, semantic and spatial memory. Current Opinion in Neurobiology, 16(2), 179–190. doi: 10.1016/j.conb.2006.03.013
  • Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89.
  • Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 162–170.
  • Mou, W., & Wang, L. (2015). Piloting and path integration within and across boundaries. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(1), 220–234.
  • Munnich, E., Landau, B., & Dosher, B. A. (2001). Spatial language and spatial representation: A cross-linguistic comparison. Cognition, 81, 171–208.
  • O’Keefe, J. (1991). An allocentric spatial model for the hippocampal cognitive map. Hippocampus, 1(3), 230–235. doi: 10.1002/hipo.450010303
  • O’Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J., & Maguire, E. A. (1998). Place cells, navigational accuracy, and the human hippocampus. Philosophical Transactions of the Royal Society London B: Biological Sciences, 353(1373), 1333–1340. doi: 10.1098/rstb.1998.0287
  • O’Keefe, J., & Dostrovsky, J. (1971). The Hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.
  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.
  • Peacock, C. E., & Gözenman, F. (2017). Encoding-stage adaptation effects: Long-term memory. Perception, 47(2), 216–224. doi: 10.1177/0301006617739533
  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(Feb), 3–25. doi: 10.1080/00335558008248231
  • Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive-combination view. Psychological Science, 19(12), 1301–1307.
  • Shelton, A. L., & McNamara, T. P. (1997). Multiple views of spatial memory. Psychonomic Bulletin and Review, 4(1), 102–106.
  • Shelton, A. L., & McNamara, T. P. (2001). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310.
  • Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advancements in Child Development and Behavior, 10, 9–55.
  • Starrett, M. J., Stokes, J. D., Huffman, D. J., Ferrer, E., & Ekstrom, A. D. (2018). Learning-dependent evolution of spatial representations in large-scale virtual environments. Journal of Experimental Psychology: Learning, Memory, and Cognition.
  • Taube, J. S. (2007). The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207. doi: 10.1146/annurev.neuro.29.051605.112854
  • Taylor, H. A., & Tversky, B. (1992). Spatial mental models derived from survey and route descriptions. Journal of Memory and Language, 31, 261–292.
  • Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13(3), 407–433. doi: 10.1016/0010-0285(81)90016-5
  • Waller, D., Montello, D. R., Richardson, A. E., & Hegarty, M. (2002). Orientation specificity and spatial updating of memories for layouts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(6), 1051–1063.
  • Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(2000), 215–250.
  • Weisberg, S. M., Badgio, D., & Chatterjee, A. (2018). Feel the way with a vibrotactile compass: Does a navigational aid aid navigation? bioRxiv. doi: 10.1101/122994
  • Zhang, H., Zherdeva, K., & Ekstrom, A. D. (2014). Different “routes” to a cognitive map: Dissociable forms of spatial knowledge derived from route and cartographic map learning. Memory & Cognition, 42(7), 1106–1117. doi: 10.3758/s13421-014-0418-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.