14,744
Views
258
CrossRef citations to date
0
Altmetric
Reviews

Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean

Pages 20-46 | Received 30 Mar 2013, Accepted 03 Sep 2013, Published online: 12 Feb 2014

References

  • Abdullahi, A.S., Underwood, G.J.C. & Gretz, M.R. (2006). Extracellular matrix assembly in diatoms (Bacillariophyceae). V. Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum. Journal of Phycology, 42: 363–378.
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter P. (2008). Molecular Biology of the Cell. 5th ed. Garland Science, New York.
  • Al-Hasan, R.H. & Fogg, G.E. (1987). Glycolate concentrations in relation to hydrography in Liverpool Bay. Marine Ecology Progress Series, 37: 305–307.
  • Alldredge, A.L., Passow, U. & Logan B.E. (1993). The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Research Part I, 40: 1131–1140.
  • Aluwihare, L.I. & Repeta, D.J. (1999). A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae. Marine Ecology Progress Series, 186: 105–117.
  • Aluwihare, L.I., Repeta, D.J. & Chen, R.F. (1997). A major biopolymeric component to dissolved organic carbon in surface sea water. Nature, 387: 166–169.
  • Anderson, T.R. & Williams, P.J.L. (1998). Modelling the seasonal cycle of dissolved organic carbon at station E-1 in the English Channel. Estuarine Coastal and Shelf Science, 46: 93–109.
  • Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S.G., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kroger, N., Lau, W.W.Y., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P. & Rokhsar, D.S. (2004). The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science, 306: 79–86.
  • Arnold, S.R., Spracklen, D.V., Williams, J., Yassaa, N., Sciare, J., Bonsang, B., Gros, V., Peeken, I., Lewis, A.C., Alvain, S. & Moulin, C. (2009). Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol. Atmospheric Chemistry and Physics, 9: 1253–1262.
  • Arnosti, C., Grossart, H.P., Mühling, M., Joint, I. & Passow, U. (2011). Dynamics of extracellular enzyme activities in seawater under changed atmospheric pCO2: a mesocosm investigation. Aquatic Microbial Ecology, 64: 285–298.
  • Arrigo, K.R. (2005). Marine microorganisms and global nutrient cycles. Nature, 437: 349–355.
  • Atkinson, D., Ciotti, B.J. & Montagnes, D.J.S. (2003). Protists decrease in size linearly with temperature: ca. 2.5% degrees °C–1. Proceedings of the Royal Society B, 270: 2605–2611.
  • Aumont, O., Maier-Reimer, E., Blain, S. & Monfray, P. (2003). An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochemical Cycles, 17: 1060.
  • Ayers, G.P. & Cainey, J.M. (2007). The CLAW hypothesis: a review of the major developments. Environmental Chemistry, 4: 366–374.
  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyerreil, L.A. & Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10: 257–263.
  • Badger, M.R., Andrews, T.J., Whitney, S.M., Ludwig, M., Yellowlees, D.C., Leggat, W. & Price, D. (1998). The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany, 76: 1052–1071.
  • Baines, S.B. & Pace, M.L. (1991). The production of dissolved organic-matter by phytoplankton and its importance to bacteria – patterns across marine and fresh-water systems. Limnology and Oceanography, 36: 1078–1090.
  • Baklouti, M., Diaz, F., Pinazo, C., Faure, V. & Queguiner, B. (2006). Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems and description of a new model. Progress in Oceanography, 71: 1–33.
  • Barnett, T.P., Pierce, D.W., Achutarao, K.M., Gleckler, P.J., Santer, B.D., Gregory, J.M. & Washington, W.M. (2005). Penetration of human-induced warming into the world's oceans. Science, 309: 284–287.
  • Beardall, J. & Raven, J.A. (2004). The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 43: 26–40.
  • Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M. & Boss, E.S. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444: 752–755.
  • Bell, W. & Mitchell, R. (1972). Chemotactic and growth responses of marine bacteria to algal extracellular products. Biological Bulletin, 143: 265–277.
  • Bell, W.H., Lang, J.M. & Mitchell, R. (1974). Selective stimulation of marine bacteria by algal extracellular products. Limnology and Oceanography, 19: 833–839.
  • Bellinger, B.J., Abdullahi, A.S., Gretz, M.R. & Underwood, G.J.C. (2005). Biofilm polymers: relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms. Aquatic Microbial Ecology, 38: 169–180.
  • Bellinger, B.J., Underwood, G.J.C., Ziegler, S.E. & Gretz, M.R. (2009). Significance of diatom-derived polymers in carbon flow dynamics within estuarine biofilms determined through isotopic enrichment. Aquatic Microbial Ecology, 55: 169–187.
  • Benner, R. & Strom, M. (1993). A critical-evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic-oxidation. Marine Chemistry, 41: 153–160.
  • Berman-Frank, I., Rosenberg, G., Levitan, O., Haramaty, L. & Mari, X. (2007). Coupling between autocatalytic cell death and transparent exopolymeric particle production in the marine cyanobacterium Trichodesmium. Environmental Microbiology, 9: 1415–1422.
  • Bettarel, Y., Kan, J., Wang, K., Williamson, K.E., Cooney, S., Ribblett, S., Chen, F., Wommack, K.E. & Coats, D.W. (2005). Isolation and preliminary characterisation of a small nuclear inclusion virus infecting the diatom Chaetoceros cf. gracilis. Aquatic Microbial Ecology, 40: 103–114.
  • Bidle, K.D. & Falkowski, P.G. (2004). Cell death in planktonic, photosynthetic microorganisms. Nature Reviews Microbiology, 2: 643–655.
  • Biddanda, B. & Benner, R. (1997). Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography, 42: 506–518.
  • Biersmith, A. & Benner, R. (1998). Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Marine Chemistry, 63: 131–144.
  • Billen, G., Joiris, C., Wijnant, J. & Gillain, G. (1980). Concentration and microbiological utilization of small organic-molecules in the Scheldt estuary, the Belgian coastal zone of the North Sea and the English Channel. Estuarine and Coastal Marine Science, 11: 279–294.
  • Bjørnsen, P.K. (1988). Phytoplankton exudation of organic-matter – why do healthy cells do it. Limnology and Oceanography, 33: 151–154.
  • Bonsang, B., Gros, V., Peeken, I., Yassaa, N., Bluhm, K., Zoellner, E., Sarda-Esteve, R. & Williams, J. (2010). Isoprene emission from phytoplankton monocultures: the relationship with chlorophyll-a, cell volume and carbon content. Environmental Chemistry, 7: 554–563.
  • Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehlen, M. (2005). Response of diatoms distribution to global warming and potential implications: a global model study. Geophysical Research Letters, 32: L19606.
  • Borchard, C. & Engel, A. (2012). Organic matter exudation by Emiliania huxleyi under simulated future ocean conditions. Biogeosciences, 9: 3405–3423.
  • Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J.A., Brownlee, C., Cadoret, J.P., Chiovitti, A., Choi, C.J., Coesel, S., De Martino, A., Detter, J.C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M.J.J., Jenkins, B.D., Jiroutova, K., Jorgensen, R.E., Joubert, Y., Kaplan, A., Kroger, N., Kroth, P.G., La Roche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P.J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L.K., Montsant, A., Oudot-Le Secq, M.P., Napoli, C., Obornik, M., Parker, M.S., Petit, J.L., Porcel, B.M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T.A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M.R., Taylor, A.R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L.S., Rokhsar, D.S., Weissenbach, J., Armbrust, E.V., Green, B.R., van de Peer, Y. & Grigoriev, I.V. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456: 239–244.
  • Boyce, D.G., Lewis, M.R. & Worm, B. (2010a). Global phytoplankton decline over the past century. Nature, 466: 591–596.
  • Boyce, D.G., Lewis, M.R. & Worm, B. (2010b). Boyce et al. reply. Nature, 472: E8–E9.
  • Bratbak, G., Egge, J.K. & Heldal, M. (1993). Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Marine Ecology Progress Series, 93: 39–48.
  • Bronk, D.A., Glibert, P.M. & Ward, B.B. (1994). Nitrogen uptake, dissolved organic nitrogen release, and new production. Science, 265: 1843–1846.
  • Bronk, D.A., See, J.H., Bradley, P. & Killberg, L. (2007). DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences, 4: 283–296.
  • Bruckner, C.G., Rehm, C., Grossart, H.P. & Kroth, P.G. (2011). Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environmental Microbiology, 13: 1052–1063.
  • Brum, J.R. (2005). Concentration, production and turnover of viruses and dissolved DNA pools at Stn ALOHA, North Pacific Subtropical Gyre. Aquatic Microbial Ecology, 41: 103–113.
  • Burd, A.B. & Jackson, G.A. (2009). Particle aggregation. Annual Review of Marine Science, 1: 65–90.
  • Caldeira, K. & Wickett, M.E. (2003). Anthropogenic carbon and ocean pH. Nature, 425: 365.
  • Caron, D.A. (2000). Symbiosis and mixotrophy among pelagic organisms. In Microbial Ecology of the Oceans (Kirchman, D.L., editor), 495–523. Wiley–Liss, New York.
  • Carr, M. E., Friedrichs, M. A. M., Schmeltz, M., Aita, M. N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quere, C., Lohrenz, S., Marra, J., Melin, F., Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K. & Yamanaka, Y. (2006). A comparison of global estimates of marine primary production from ocean color. Deep-Sea Research II, 53: 741–770.
  • Charlson, R.J., Lovelock, J.E., Andreae, M.O. & Warren, S.G. (1987). Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature, 326: 655–661.
  • Chen, W.H. & Wangersky, P.J. (1996). Production of dissolved organic carbon in phytoplankton cultures as measured by high-temperature catalytic oxidation and ultraviolet photo-oxidation methods. Journal of Plankton Research, 18: 1201–1211.
  • Chin, W.C., Orellana, M.V., Quesada, I. & Verdugo, P. (2004). Secretion in unicellular marine phytoplankton: demonstration of regulated exocytosis in Phaeocystis globosa. Plant and Cell Physiology 45: 535–542.
  • Christian, J. R. & Anderson, T.R. (2002). Modeling DOM biogeochemistry. In Biogeochemistry of marine dissolved organic matter (Hansell, D.A. & Carlson, C.A., editors), 717–755. Academic Press, San Diego, CA.
  • Claquin, P., Probert, I., Lefebvre, S. & Veron, B. (2008). Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquatic Microbial Ecology, 51: 1–11.
  • Coble, P.G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Marine Chemistry, 51: 325–346.
  • Collins, S. (2012). Evolution on acid. Nature Geoscience, 5: 310–311.
  • Collins, S. & Bell, G. (2004). Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature, 431: 566–569.
  • Crawfurd, K.J., Raven, J.A., Wheeler, G.L., Baxter, E.J. & Joint, I. (2011). The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH. PLOS One, 6: e26695.
  • Decho, A.W. (1990). Microbial exopolymer secretions in ocean environments – their role(s) in food webs and marine processes. Oceanography and Marine Biology, 28: 73–153.
  • Doney, S.C. (2006). Plankton in a warmer world. Nature, 444: 695–696.
  • Dring, M. J. (1982). The biology of marine plants. Edward Arnold, London.
  • Dron, A., Rabouille, S., Claquin, P., Chang, P., Raimbault, V., Talec, A. & Sciandra, A. (2012). Light:dark (12:12 h) quantification of carbohydrate fluxes in Crocosphaera watsonii. Aquatic Microbial Ecology, 68: 43–55.
  • Droop, M.R. (1968). Vitamin B12 and marine ecology. IV. Kinetics of uptake growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association of the United Kingdom, 48: 689–733.
  • Droop, M.R. (1983). 25 years of algal growth-kinetics – a personal view. Botanica Marina, 26: 99–112.
  • Ducklow, H.W. (1983). Production and fate of bacteria in the oceans. Bioscience, 33: 494–501.
  • Dupont, C.L., Nelson, R.K., Bashir, S., Moffett, J.W. & Ahner, B.A. (2004). Novel copper-binding and nitrogen-rich thiols produced and exuded by Emiliania huxleyi. Limnology and Oceanography, 49: 1754–1762.
  • Dyhrman, S.T., Jenkins, B.D., Rynearson, T.A., Saito, M.A., Mercier, M.L., Alexander, H., Whitney, L.P., Drzewianowski, A., Bulygin, V.V., Bertrand, E.M., Wu, Z.J., Benitez-Nelson, C. & Heithoff, A. (2012). The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLOS One, 7: e33768.
  • Egge, J.K., Thingstad, T.F., Larsen, A., Engel, A., Wohlers, J., Bellerby, R.G.J. & Riebesell, U. (2009). Primary production during nutrient-induced blooms at elevated CO2 concentrations. Biogeosciences, 6: 877–885.
  • Emerson, S.R. & Hedges, J.I. (2008). Chemical oceanography and the marine carbon cycle. Cambridge University Press, New York, NY.
  • Engel, A. (2000). The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. Journal of Plankton Research, 22: 485–497.
  • Engel, A. (2004). Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep-Sea Research Part I – Oceanographic Research Papers, 51: 83–92.
  • Engel, A., Goldthwait, S., Passow, U. & Alldredge, A. (2002). Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnology and Oceanography, 47: 753–761.
  • Engel, A., Händel, N., Wohlers, J., Lunau, M., Grossart, H.P., Sommer, U. & Riebesell, U. (2011). Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: results from a mesocosm study. Journal of Plankton Research, 33: 357–372.
  • Engel, A., Borchard, C., Piontek, J., Schulz, K.G., Riebesell, U. & Bellerby, R. (2013). CO2 increases 14C primary production in an Arctic plankton community. Biogeosciences, 10: 1291–1308.
  • Falkowski, P.G. (2000). Rationalizing elemental ratios in unicellular algae. Journal of Phycology, 36: 3–6.
  • Falkowski, P.G. & Oliver, M.J. (2007). Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology, 5: 813–819.
  • Falkowski, P.G. & Raven, J.A. (1997). Aquatic photosynthesis. Blackwell Science, Oxford.
  • Falkowski, P.G. & Raven J.A. (2007) Aquatic photosynthesis. 2nd ed. Princeton University Press, Princeton, NJ.
  • Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V. & Steffen, W. (2000). The global carbon cycle: a test of our knowledge of Earth as a system. Science, 290: 291–296.
  • Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281: 237–240.
  • Finkel, Z.V., Beardall, J., Flynn, K.J., Quigg, A., Rees, T.A.V. & Raven, J.A. (2010). Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research, 32: 119–137.
  • Fistarol, G.O., Legrand, C. & Graneli, E. (2005). Allelopathic effect on a nutrient-limited phytoplankton species. Aquatic Microbial Ecology, 41: 153–161.
  • Flemming, H.C. & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8: 623–633.
  • Flynn, K.J., Clark, D.R. & Xue, Y. (2008). Modeling the release of dissolved organic matter by phytoplankton. Journal of Phycology, 44: 1171–1187.
  • Flynn, K.J., Blackford, J.C., Baird, M.E., Raven, J.A., Clark, D.R., Beardall, J., Brownlee, C., Fabian, H. & Wheeler, G.L. (2012). Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change, 2: 510–513.
  • Fogg, G.E. (1983). The ecological significance of extracellular products of phytoplankton photosynthesis. Botanica Marina, 26: 3–14.
  • Franklin, D.J., Brussaard, C.P.D. & Berges, J.A. (2006). What is the role and nature of programmed cell death in phytoplankton ecology? European Journal of Phycology, 41: 1–14.
  • Franklin, D.J., Airs, R.L., Fernandes, M., Bell, T.G., Bongaerts, R.J., Berges, J.A. & Malin, G. (2012). Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnology and Oceanography, 57: 305–317.
  • Fukao, T., Kimoto, K. & Kotani, Y. (2010). Production of transparent exopolymer particles by four diatom species. Fisheries Science, 76: 755–760.
  • Gao, K.S., Helbling, E.W., Häder, D.-P. & Hutchins, D.A. (2012). Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Marine Ecology Progress Series, 470: 167–189.
  • Gärdes, A., Kaeppel, E., Shehzad, A., Seebah, S., Teeling, H., Yarza, P., Glöckner, F.O., Grossart, H.P. & Ullrich, M.S. (2010). Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Standards in Genomic Sciences, 3: 97–107.
  • Gärdes, A., Iversen, M.H., Grossart, H.P., Passow, U. & Ullrich, M.S. (2011). Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME Journal, 5: 436–445.
  • Gärdes, A., Ramaye, Y., Grossart, H.P., Passow, U. & Ullrich, M.S. (2012). Effects of Marinobacter adhaerens HP15 on polymer exudation by Thalassiosira weissflogii at different N:P ratios. Marine Ecology Progress Series, 461: 1–14.
  • Geider, R.J. & La Roche, J. (2002). Redfield revisited: variability of C : N : P in marine microalgae and its biochemical basis. European Journal of Phycology, 37: 1–17.
  • Geider, R.J., Macintyre, H.L. & Kana, T.M. (1998). A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnology and Oceanography, 43: 679–694.
  • Giordano, M., Bardall, J. & Raven, J.A. (2005). CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology, 56: 99–131.
  • Glibert, P.M. & Bronk, D.A. (1994). Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp. Applied and Environmental Microbiology, 60: 3996–4000.
  • Gobler, C.J., Hutchins, D.A., Fisher, N.S., Cosper, E.M. & Sanudo-Wilhelmy, S.A. (1997). Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnology and Oceanography, 42: 1492–1504.
  • Gondwe, M., Krol, M., Gieskes, W., Klaassen, W. & de Baar, H. (2003). The contribution of ocean-leaving DMS to the global atmospheric burdens of DMS, MSA, SO2, and NSS SO4=. Global Biogeochemical Cycles, 17: 1056.
  • Granum, E., Kirkvold, S. & Myklestad, S.M. (2002). Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Marine Ecology Progress Series, 242: 83–94.
  • Gross, E.M. (2003). Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences, 22: 313–339.
  • Guillard, R.R.L. & Wangersky, P.J. (1958). The production of extracellular carbohydrates by some marine flagellates. Limnology and Oceanography, 3: 449–454.
  • Hansell, D.A., Carlson, C.A., Repeta, D.J. & Schlitzer, R. (2009). Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography, 22: 190–201.
  • Harlay, J., De Bodt, C., Engel, A., Jansen, S., D'Hoop, Q., Piontek, J., Van Oostende, N., Groom, S., Sabbe, K. & Chou, L. (2009). Abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay. Deep-Sea Research I, 56: 1251–1265.
  • Hassler, C.S., Schoemann, V., Nichols, C.M., Butler, E.C.V. & Boyd, P.W. (2011). Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 108: 1076–1081.
  • Hasegawa, T., Koike, I. & Mukai, H. (2000). Release of dissolved organic nitrogen by size-fractionated natural planktonic assemblages in coastal waters. Marine Ecology Progress Series, 198: 43–49.
  • Hedges, J.I., Bergamaschi, B.A. & Benner, R. (1993). Comparative analyses of DOC and DON in natural-waters. Marine Chemistry, 41: 121–134.
  • Hellebust, J.A. (1965). Excretion of some organic compounds by marine phytoplankton. Limnology and Oceanography, 10: 192–206.
  • Hellebust, J A. (1974). Extracellular products. In Algal physiology and biochemistry (Stewart, W.D.P., editor), 838–863. University of California Press, Berkeley, CA.
  • Hoppe, C.J.M., Langer, G. & Rost, B. (2011). Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. Journal of Experimental Marine Biology and Ecology, 406: 54–62.
  • Hoppe, C.J.M., Langer, G., Rokitta, S.D., Wolf-Gladrow, D.A. & Rost, B. (2012). Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences 9: 2401–2405.
  • Hu, S.H. & Smith, W.O. (1998). The effects of irradiance on nitrate uptake and dissolved organic nitrogen release by phytoplankton in the Ross Sea. Continental Shelf Research, 18: 971–990.
  • Huertas, I.E., Rouco, M., López-Rodas, V. & Costas, E. (2011). Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society B, 278: 3534–3543.
  • Hurd, C.L., Hepburn, C.D., Currie, K.I., Raven, J.A. & Hunter, K.A. (2009). Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. Journal of Phycology, 45: 1236–1251.
  • IPCC (2013) Summary for policymakers. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M., editors). Cambridge University Press, Cambridge.
  • Kamjunke, N. & Tittel, J. (2009). Mixotrophic algae constrain the loss of organic carbon by exudation. Journal of Phycology, 45: 807–811.
  • Karl, D.M., Hebel, D.V., Björkman, K. & Letelier, R.M. (1998). The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnology and Oceanography, 43: 1270–1286.
  • Keller, D.P. & Hood, R.R. (2011). Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay. Ecological Modelling, 222: 1139–1162.
  • Kiene, R.P., Linn, L.J. & Bruton, J.A. (2000). New and important roles for DMSP in marine microbial communities. Journal of Sea Research, 43: 209–224.
  • Kim, J.M., Lee, K., Shin, K., Yang, E.J., Engel, A., Karl, D.M. & Kim, H.C. (2011). Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions. Geophysical Research Letters, 38: L08612.
  • Kirchman, D.L. (1999). Oceanography – Phytoplankton death in the sea. Nature, 398: 293–294.
  • Koeve, W. & Oschlies, A. (2012). Potential impact of DOM accumulation on fCO2 and carbonate ion computations in ocean acidification experiments. Biogeosciences, 9: 3787–3798.
  • Kragh, T. & Søndergaard, M. (2009). Production and decomposition of new DOC by marine plankton communities: carbohydrates, refractory components and nutrient limitation. Biogeochemistry, 96: 177–187.
  • Kriest, I. & Oschlies, A. (2007). Modelling the effect of cell-size-dependent nutrient uptake and exudation on phytoplankton size spectra. Deep-Sea Research Part I – Oceanographic Research Papers, 54: 1593–1618.
  • Kujawinski, E.B. (2011). The impact of microbial metabolism on marine dissolved organic matter. Annual Review of Marine Science, 3: 567–599.
  • Lagaria, A., Psarra, S., Lefèvre, D., Van Wambeke, F., Courties, C., Pujo-Pay, M., Oriol, L., Tanaka, T. & Christaki, U. (2011). The effects of nutrient additions on particulate and dissolved primary production and metabolic state in surface waters of three Mediterranean eddies. Biogeosciences, 8: 2595–2607.
  • Lancelot, C. (1984). Extracellular release of small and large molecules by phytoplankton in the southern bight of the North Sea. Estuarine Coastal and Shelf Science, 18: 65–77.
  • Laroche, D., Vézina, A.F., Levasseur, M., Gosselin, M., Stefels, J., Keller, M.D., Matrai, P.A. & Kwint, R.L.J. (1999). DMSP synthesis and exudation in phytoplankton: a modeling approach. Marine Ecology Progress Series, 180: 37–49.
  • Leão, P.N., Vasconcelos, M. & Vasconcelos, V.M. (2009). Allelopathy in freshwater cyanobacteria. Critical Reviews in Microbiology, 35: 271–282.
  • Leboulanger, C., Descolasgros, C. & Jupin, H. (1994). HPLC determination of glycolic acid in seawater – an estimation of phytoplankton photorespiration in the Gulf of Lions, western Mediterranean Sea. Journal of Plankton Research, 16: 897–903.
  • Leboulanger, C., Oriol, L., Jupin, H. & Descolas-Gros, C. (1997). Diel variability of glycolate in the eastern tropical Atlantic Ocean. Deep-Sea Research I, 44: 2131–2139.
  • Leboulanger, C., Serve, L., Comellas, L. & Jupin, H. (1998a). Determination of glycolic acid released from marine phytoplankton by post-derivatization gas chromatography mass spectrometry. Phytochemical Analysis, 9: 5–9.
  • Leboulanger, C., Martin-Jézéquel, V., Descolas-Gros, C., Sciandra, A. & Jupin, H.J. (1998b). Photorespiration in continuous culture of Dunaliella tertiolecta (Chlorophyta): relationships between serine, glycine, and extracellular glycolate. Journal of Phycology, 34: 651–654.
  • Legrand, C., Rengefors, K., Fistarol, G.O. & Graneli, E. (2003). Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia, 42: 406–419.
  • Leterme, S.C., Edwards, M., Seuront, L., Attrill, M.J., Reid, P.C. & John, A.W.G. (2005). Decadal basin-scale changes in diatoms, dinoflagellates, and phytoplankton color across the North Atlantic. Limnology and Oceanography, 50: 1244–1253.
  • Lewin, J.C. & Lewin, R.A. (1960). Auxotrophy and heterotrophy in marine littoral diatoms. Canadian Journal of Microbiology, 6: 127–133.
  • Levitus, S., Antonov, J.I., Boyer, T.P. & Stephens, C. (2000). Warming of the world ocean. Science, 287: 2225–2229.
  • Lohbeck, K.T., Riebesell, U. & Reusch, T.B.H. (2012). Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience, 5: 346–351.
  • Lombardi, A.T. & Wangersky, P.J. (1991). Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Marine Ecology Progress Series, 77: 39–47.
  • Long, R.A. & Azam, F. (1996). Abundant protein-containing particles in the sea. Aquatic Microbial Ecology, 10: 213–221.
  • Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. (1995). An estimate of global primary production in the ocean from satellite radiometer data, Journal of Plankton Research, 17: 1245–1271.
  • López-Sandoval, D.C., Marañón, E., Fernández, A., González, J., Gasol, J.M., Lekunberri, I., Varela, M., Calvo-Díaz, A., Morán, X.A.G., Álvarez-Salgado, X.A. & Figueiras, F.G. (2010). Particulate and dissolved primary production by contrasting phytoplankton assemblages during mesocosm experiments in the Ria de Vigo (NW Spain). Journal of Plankton Research, 32: 1231–1240.
  • López-Sandoval, D.C., Fernández, A. & Marañón, E. (2011). Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea. Biogeosciences, 8: 815–825.
  • López-Sandoval, D.C., Rodríguez-Ramos, T., Cermeño, P. & Marañón, E. (2013). Exudation of organic carbon by marine phytoplankton: dependence on taxon and cell size. Marine Ecology Progress Series, 477: 53–60.
  • Lyman, J.M., Good, S.A., Gouretski, V.V., Ishii, M., Johnson, G.C., Palmer, M.D., Smith, D.M. & Willis, J.K. (2010). Robust warming of the global upper ocean. Nature, 465: 334–337.
  • Mackas, D.L. (2010). Does blending of chlorophyll data bias temporal trend? Nature, 472: E4–E5.
  • Magaletti, E., Urbani, R., Sist, P., Ferrari, C.R. & Cicero, A.M. (2004). Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P-limitation. European Journal of Phycology, 39: 133–142.
  • Mague, T.H., Friberg, E., Hughes, D.J. & Morris, I. (1980). Extracellular release of carbon by marine-phytoplankton – a physiological approach. Limnology and Oceanography, 25: 262–79.
  • Malej, A. & Harris, R.P. (1993). Inhibition of copepod grazing by diatom exudates – a factor in the development of mucus aggregates. Marine Ecology Progress Series, 96: 33–42.
  • Malin, G. & Kirst, G.O. (1997). Algal production of dimethyl sulfide and its atmospheric role. Journal of Phycology, 33: 889–896.
  • Malin, G., Wilson, W.H., Bratbak, G., Liss, P.S. & Mann, N.H. (1998). Elevated production of dimethylsulfide resulting from viral infection of cultures of Phaeocystis pouchetii. Limnology and Oceanography, 43: 1389–1393.
  • Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J. & Zabala, L. (2004). Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnology and Oceanography, 49: 1652–1666.
  • Marañón, E., Cermeño, P. & Pérez, V. (2005). Continuity in the photosynthetic production of dissolved organic carbon from eutrophic to oligotrophic waters. Marine Ecology Progress Series, 299: 7–17.
  • Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R.D. (2012). Temperature, resources, and phytoplankton size structure in the ocean. Limnology and Oceanography, 57: 1266–1278.
  • Mari, X. (1999). Carbon content and C : N ratio of transparent exopolymeric particles (TEP) produced by bubbling exudates of diatoms. Marine Ecology Progress Series, 183: 59–71.
  • Mari, X. (2008). Does ocean acidification induce an upward flux of marine aggregates? Biogeosciences, 5: 1023–1031.
  • Marinov, I., Doney, S.C. & Lima, I.D. (2010). Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences, 7: 3941–3959.
  • Marker, A.F.H. (1965). Extracellular carbohydrate liberation in flagellates Isochrysis galbana and Prymnesium parvum. Journal of the Marine Biological Association of the United Kingdom, 45: 755–772.
  • Mayali, X., Franks, P.J.S. & Burton, R.S. (2011). Temporal attachment dynamics by distinct bacterial taxa during a dinoflagellate bloom. Aquatic Microbial Ecology 63: 111–122.
  • McQuatters-Gollop, A., Reid, P. C., Edwards, M., Burkill, P. H., Castellani, C., Batten, S., Gieskes, W., Beare, D., Bidigare, R. R., Head, E., Johnson, R., Kahru, M., Koslow, J.A. & Pena, A. (2010). Is there a decline in marine phytoplankton? Nature, 472: E6–E7.
  • Møller, E.F. (2007). Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis. Limnology and Oceanography, 52: 79–84.
  • Møller, E.F., Thor, P. & Nielsen, T.G. (2003). Production of DOC by Calanus finmarchicus, C. glacialis and C. hyperboreus through sloppy feeding and leakage from fecal pellets. Marine Ecology Progress Series, 262: 185–191.
  • Mongin, M., Nelson, D.M., Pondaven, P., Brzezinski, M.A. & Treguer, P. (2003). Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea. Deep-Sea Research Part I – Oceanographic Research Papers, 50: 1445–1480.
  • Montagnes, D.J.S. & Franklin, D.J. (2001). Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnology and Oceanography, 46: 2008–2018.
  • Mopper, K., Zhou, J.A., Ramana, K.S., Passow, U., Dam, H.G. & Drapeau, D.T. (1995). The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep-Sea Research II, 42: 47–73.
  • Morán, X.A.G. & Estrada, M. (2001). Short-term variability of photosynthetic parameters and particulate and dissolved primary production in the Alboran Sea (SW Mediterranean). Marine Ecology Progress Series, 212: 53–67.
  • Morán, X.A.G. & Estrada, M. (2002). Phytoplanktonic DOC and POC production in the Bransfield and Gerlache Straits as derived from kinetic experiments of C-14 incorporation. Deep-Sea Research II, 49: 769–786.
  • Morán, X.A.G., Gasol, J.M., Arin, L. & Estrada, M. (1999). A comparison between glass fiber and membrane filters for the estimation of phytoplankton POC and DOC production. Marine Ecology Progress Series, 187: 31–41.
  • Morán, X.A.G., Gasol, J.M., Pedrós-Alió, C. & Estrada, M. (2001). Dissolved and particulate primary production and bacterial production in offshore Antarctic waters during austral summer: coupled or uncoupled? Marine Ecology Progress Series, 222: 25–39.
  • Morán, X.A.G., Gasol, J.M., Pedrós-Alió, C. & Estrada, M. (2002a). Partitioning of phytoplanktonic organic carbon production and bacterial production along a coastal-offshore gradient in the NE Atlantic during different hydrographic regimes. Aquatic Microbial Ecology, 29: 239–252.
  • Morán, X.A.G., Estrada, M., Gasol, J.M. & Pedrós-Alió, C. (2002b). Dissolved primary production and the strength of phytoplankton bacterioplankton coupling in contrasting marine regions. Microbial Ecology, 44: 217–223.
  • Morán, X.A.G., Sebástian, M., Pedrós-Alió, C. & Estrada, M. (2006). Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming. Limnology and Oceanography, 51: 1791–1800.
  • Morán, X.A.G., López-Urrutia, A., Calvo-Díaz, A. & Li, W.K.W. (2010). Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology, 16: 1137–1144.
  • Morel, F.M.M., Cox, E.H., Kraepiel, A.M.L., Lane, T.W., Milligan, A.J., Schaperdoth, I., Reinfelder, J.R. & Tortell, P.D. (2002). Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Functional Plant Biology, 29: 301–308.
  • Myklestad, S. (1974). Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture. Journal of Experimental Marine Biology and Ecology, 15: 261–274.
  • Myklestad, S. (1977). Production of carbohydrates by marine planktonic diatoms. II. Influence of N/P ratio in growth medium on assimilation ratio, growth-rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. willei (Gran) Hustedt and Skeletonema costatum (Grev.) Cleve. Journal of Experimental Marine Biology and Ecology, 29: 161–179.
  • Myklestad, S.M. (1995). Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Science of the Total Environment, 165: 155–164.
  • Myklestad, S.M. (2000). Dissolved organic carbon from phytoplankton. In The handbook of environmental chemistry (D). Marine chemistry (Wangersky, P., editor), 111–148. Springer, Berlin.
  • Myklestad, S. & Haug, A (1972). Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I. Effect of the concentration of nutrients in the culture medium. Journal of Experimental Marine Biology and Ecology, 9:125–136.
  • Myklestad, S., Holm-Hansen, O., Vårum, K.M. & Volcani, B.E. (1989). Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. Journal of Plankton Research, 11: 763–773.
  • Nagata, T. (2000). Production mechanisms of dissolved organic matter. In Microbial ecology of the oceans (Kirchman, D.L., editor), 121–152. Wiley–Liss, New York.
  • Obernosterer, I. & Herndl, G.J. (1995). Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N : P ratio. Marine Ecology Progress Series, 116: 247–257.
  • Orellana, M.V., Matrai, P.A., Janer, M. & Rauschenberg, C.D. (2011). Dimethylsulfoniopropionate storage in Phaeocystis (Prymnesiophyceae) secretory vesicles. Journal of Phycology, 47: 112–117.
  • Palmer, P.I. & Shaw, S.L. (2005). Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. Geophysical Research Letters, 32: L09805.
  • Parrish, C.C. (1987). Time series of particulate and dissolved lipid classes during spring phytoplankton blooms in Bedford Basin, a marine inlet. Marine Ecology Progress Series, 35: 129–139.
  • Parrish, C.C. & Wangersky, P.J. (1987). Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Marine Ecology Progress Series, 35: 119–128.
  • Parrish, C.C., Bodennec, G. & Gentien, P. (1994). Time courses of intracellular and extracellular lipid classes in batch cultures of the toxic dinoflagellate, Gymnodinium cf. nagasakiense. Marine Chemistry, 48: 71–82.
  • Passow, U. (2000). Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Marine Ecology Progress Series, 192: 1–11.
  • Passow, U. (2002a). Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 55: 287–333.
  • Passow, U. (2002b). Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton. Marine Ecology Progress Series, 236: 1–12.
  • Passow, U. (2012). The abiotic formation of TEP under different ocean acidification scenarios. Marine Chemistry, 128: 72–80.
  • Passow, U. & Alldredge, A.L. (1995). A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography, 40: 1326–1335.
  • Passow, U. & Carlson, C.A. (2012). The biological pump in a high CO2 world. Marine Ecology Progress Series, 470: 249–271.
  • Passow, U., Alldredge, A.L. & Logan, B.E. (1994). The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Research I, 41: 335–357.
  • Pete, R., Davidson, K., Hart, M.C., Gutierrez, T. & Miller, A.E.J. (2010). Diatom derived dissolved organic matter as a driver of bacterial productivity: the role of nutrient limitation. Journal of Experimental Marine Biology and Ecology, 391: 20–26.
  • Peter, K.H. & Sommer, U (2013). Phytoplankton cell size reduction in response to warming mediated by nutrient limitation. PLoS ONE, 8: e71528.
  • Piontek, J., Händel, N., Langer, G., Wohlers, J., Riebesell, U. & Engel, A. (2009). Effects of rising temperature on the formation and microbial degradation of marine diatom aggregates. Aquatic Microbial Ecology, 54: 305–318.
  • Piontek, J., Lunau, M., Händel, N., Borchard, C., Wurst, M. & Engel, A. (2010). Acidification increases microbial polysaccharide degradation in the ocean. Biogeosciences, 7: 1615–1624.
  • Polovina, J.J., Howell, E.A. & Abecassis, M. (2008). Ocean's least productive waters are expanding. Geophysical Research Letters, 35: L03618.
  • Poulet, S.A. & Martin-Jézéquel, V. (1983). Relationships between dissolved free amino acids, chemical composition and growth of the marine diatom Chaetoceros debile. Marine Biology, 77: 93–100.
  • Prince, E.K., Poulson, K.L., Myers, T.L., Sieg, R.D. & Kubanek, J. (2010). Characterization of allelopathic compounds from the red tide dinoflagellate Karenia brevis. Harmful Algae, 10: 39–48.
  • Puskaric, S. & Mortain-Bertrand, A. (2003). Physiology of diatom Skeletonema costatum (Grev.) Cleve photosynthetic extracellular release: evidence for a novel coupling between marine bacteria and phytoplankton. Journal of Plankton Research, 25: 1227–1235.
  • Quigg, A., Finkel, Z.V., Irwin, A.J., Rosenthal, Y., Ho, T.Y., Reinfelder, J.R., Schofield, O., Morel, F.M.M. & Falkowski, P.G. (2003). The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature, 425: 291–294.
  • Quinn, P.K. & Bates, T.S. (2011). The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480: 51–56.
  • Ramus, J. (1977). Alcian blue – quantitative aqueous assay for algal acid and sulfated polysaccharides. Journal of Phycology, 13: 345–348.
  • Raven, J.A. (1997). Inorganic carbon acquisition by marine autotrophs. Advances in Botanical Research, 27: 85–209.
  • Repeta, D.J. & Aluwihare, L.I. (2006). Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: implications for organic carbon cycling. Limnology and Oceanography, 51: 1045–1053.
  • Rice, E.L. (1979). Allelopathy – update. Botanical Review, 45: 15–109.
  • Riebesell, U. (2004). Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography, 60: 719–729.
  • Riebesell, U., Wolf-Gladrow, D.A. & Smetacek, V. (1993). Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 361: 249–251.
  • Riebesell, U., Schulz, K.G., Bellerby, R.G.J., Botros, M., Fritsche, P., Meyerhofer, M., Neill, C., Nondal, G., Oschlies, A., Wohlers, J. & Zöllner, E. (2007). Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450: 545–548.
  • Riemann, L., Holmfeldt, K. & Titelman, J. (2009). Importance of viral lysis and dissolved DNA for bacterioplankton activity in a P-limited estuary, Northern Baltic Sea. Microbial Ecology, 57: 286–294.
  • Robinson, C. (2008). Heterotrophic bacterial respiration. In Microbial ecology of the oceans. 2nd ed. (Kirchman, D.L., editor), 289–325. Wiley-Blackwell, Hoboken, NJ.
  • Romera-Castillo, C., Sarmento, H., Alvarez-Salgado, X.A., Gasol, J.M. & Marrasé, C. (2010). Production of chromophoric dissolved organic matter by marine phytoplankton. Limnology and Oceanography, 55: 446–454.
  • Rost, B., Zondervan, I. & Wolf-Gladrow, D. (2008). Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Marine Ecology Progress Series, 373: 227–237.
  • Royal Society (2005). Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society, London.
  • Rykaczewski, R.R. & Dunne, J.P. (2010). A measured look at ocean chlorophyll trends. Nature, 472: E5–E6.
  • Rynearson, T.A. & Palenik, B. (2011). Learning to read the oceans: genomics of marine phytoplankton. Advances in Marine Biology, 60: 1–39.
  • Rzadkowolski, C.E. & Thornton, D.C.O. (2012). Using laser scattering to identify diatoms and conduct aggregation experiments. European Journal of Phycology, 47: 30–41.
  • Sapp, M., Schwaderer, A.S., Wiltshire, K.H., Hoppe, H.G., Gerdts, G. & Wichels, A. (2007). Species-specific bacterial communities in the phycosphere of microalgae? Microbial Ecology, 53: 683–699.
  • Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S.A. & Stouffer, R. (2004). Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles, 18: GB3003.
  • Sharp, J.H. (1977). Excretion of organic matter by marine-phytoplankton – do healthy cells do it? Limnology and Oceanography, 22: 381–399.
  • Sharp, J.H. (2002). Analytical methods for total DOM pools. In Biogeochemistry of marine dissolved organic matter (Hansell, D.A. & Carlson, C.A., editors), 35–58. Academic Press, San Diego, CA.
  • Shaw, S.L., Chisholm, S.W. & Prinn, R.G. (2003). Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. Marine Chemistry, 80: 227–245.
  • Simó, R., Archer, S.D., Pedrós-Alió, C., Gilpin, L. & Stelfox-Widdicombe, C.E. (2002). Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnology and Oceanography, 47: 53–61.
  • Smith, D.F. & Wiebe, W.J. (1976). Constant release of photosynthate from marine phytoplankton. Applied and Environmental Microbiology, 32: 75–79.
  • Smith, D.J. & Underwood, G.J.C. (1998). Exopolymer production by intertidal epipelic diatoms. Limnology and Oceanography, 43: 1578–1591.
  • Smith, D.J. & Underwood, G.J.C. (2000). The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. Journal of Phycology, 36: 321–333.
  • Staats, N., Stal, L.J., De Winder, B. & Mur, L.R. (2000). Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Marine Ecology Progress Series, 193: 261–269.
  • Stedmon, C.A. & Markager, S. (2005). Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnology and Oceanography, 50: 1415–1426.
  • Steeman-Nielsen, E. (1952). The use of radio-active carbon (C14) for measuring organic production in the sea. Journal du Conseil International pour l’Exploration de la Mer, 18: 117–140.
  • Stefels, J. & van Boekel, W.H.M. (1993). Production of DMA from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Marine Ecology Progress Series, 97: 11–18.
  • Stocker, R. (2012). Marine microbes see a sea of gradients. Science, 338: 628–633.
  • Sugimura, Y. & Suzuki, Y. (1988). A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Marine Chemistry, 24: 105–131.
  • Sunda, W., Kieber, D.J., Kiene, R.P. & Huntsman, S. (2002). An antioxidant function for DMSP and DMS in marine algae. Nature, 418: 317–320.
  • Sunda, W.G., Shertzer, K.W. & Hardison, D.R. (2009). Ammonium uptake and growth models in marine diatoms: Monod and Droop revisited. Marine Ecology Progress Series, 386: 29–41.
  • Suratman, S., Weston, K., Jickells, T., Chance, R. & Bell, T. (2008). Dissolved organic matter release by an axenic culture of Emiliania huxleyi. Journal of the Marine Biological Association of the United Kingdom, 88: 1343–1346.
  • Suttle, C.A. (2005). Viruses in the sea. Nature 437: 356–361.
  • Suzuki, Y. (1993). On the measurement of DOC and DON in seawater. Marine Chemistry, 41: 287–288.
  • Tang, D., Shafer, M.M., Karner, D.A. & Armstrong, D.E. (2005). Response of nonprotein thiols to copper stress and extracellular release of glutathione in the diatom Thalassiosira weissflogii. Limnology and Oceanography, 50: 516–525.
  • Teira, E., Pazó, M.J., Serret, P. & Fernández, E. (2001a). Dissolved organic carbon production by microbial populations in the Atlantic Ocean. Limnology and Oceanography, 46: 1370–1377.
  • Teira, E., Serret, P. & Fernández, E. (2001b). Phytoplankton size-structure, particulate and dissolved organic carbon production and oxygen fluxes through microbial communities in the NW Iberian coastal transition zone. Marine Ecology Progress Series, 219: 65–83.
  • Teira, E., Abalde, J., Álvarez-Ossorio, M.T., Bode, A., Cariño, C., Cid, A., Fernández, E., González, N., Lorenzo, J., Valencia, J. & Varela, M. (2003a). Plankton carbon budget in a coastal wind-driven upwelling station off A Coruna (NW Iberian Peninsula). Marine Ecology Progress Series, 265: 31–43.
  • Teira, E., Pazó, M.J., Quevedo, M., Fuentes, M.V., Niell, F.X. & Fernández, E. (2003b). Rates of dissolved organic carbon production and bacterial activity in the eastern North Atlantic Subtropical Gyre during summer. Marine Ecology Progress Series, 249: 53–67.
  • Thamatrakoln, K., Korenovska, O., Niheu, A.K. & Bidle, K.D. (2012). Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environmental Microbiology, 14: 67–81.
  • Thornton, D.C.O. (2002). Diatom aggregation in the sea: mechanisms and ecological implications. European Journal of Phycology, 37: 149–161.
  • Thornton, D.C.O. (2009). Effect of low pH on carbohydrate production by a marine planktonic diatom (Chaetoceros muelleri). Research Letters in Ecology, Article ID 105901.
  • Thornton, D.C.O. & Thake, B. (1998). Effect of temperature on the aggregation of Skeletonema costatum (Bacillariophyceae) and the implication for carbon flux in coastal waters. Marine Ecology Progress Series, 174: 223–231.
  • Timmermans, K.R., Veldhuis, M.J.W. & Brussaard, C.P.D. (2007). Cell death in three marine diatom species in response to different irradiance levels, silicate, or iron concentrations. Aquatic Microbial Ecology, 46: 253–261.
  • Tolbert, N. E. (1974). Photorespiration. In Algal physiology and biochemistry (Stewart, W.D.P., editor), 474–504. University of California Press, Berkeley, CA.
  • Tolbert, N.E. & Zill, L.P. (1956). Excretion of glycolic acid by algae during photosynthesis. Journal of Biological Chemistry, 222: 895–906.
  • Underwood, G.J.C. & Paterson, D.M. (2003). The importance of extracellular carbohydrate production by marine epipelic diatoms. Advances in Botanical Research, 40: 183–240.
  • Underwood, G.J.C., Boulcott, M., Raines, C.A. & Waldron, K. (2004). Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. Journal of Phycology, 40: 293–304.
  • Veldhuis, M.J.W., Kraay, G.W. & Timmermans, K.R. (2001). Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. European Journal of Phycology, 36: 167–177.
  • Verdugo, P. (2012). Marine microgels. Annual Review of Marine Science, 4: 375–400.
  • Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U. & Santschi, P.H. (2004). The oceanic gel phase: a bridge in the DOM-POM continuum. Marine Chemistry, 92: 67–85.
  • Westberry, T., Behrenfeld, M.J., Siegel, D.A. & Boss, E. (2008). Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochemical Cycles, 22: GB2024.
  • Wetz, M.S. & Wheeler, P.A. (2003). Production and partitioning of organic matter during simulated phytoplankton blooms. Limnology and Oceanography, 48: 1808–1817.
  • Wetz, M.S. & Wheeler, P.A. (2007). Release of dissolved organic matter by coastal diatoms. Limnology and Oceanography, 52: 798–807.
  • White, A.W. (1974). Growth of 2 facultatively heterotrophic marine centric diatoms. Journal of Phycology, 10: 292–300.
  • Whittingham, C.P. & Pritchard, G.G. (1963). Production of glycollate during photosynthesis in Chlorella. Proceedings of the Royal Society B, 157: 366–380.
  • Williams, P.J. Le B. (1990). The importance of losses during microbial growth: commentary on the physiology, measurement and ecology of the release of dissolved organic material. Marine Microbial Food Webs, 4: 175–206.
  • Winder, M. & Sommer, U. (2012). Phytoplankton response to a changing climate. Hydrobiologia, 698: 5–16.
  • Wingenter, O.W., Haase, K.B., Strutton, P., Friederich, G., Meinardi, S., Blake, D.R. & Rowland, F.S. (2004). Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern ocean iron enrichment experiments. Proceedings of the National Academy of Sciences of the United States of America, 101: 8537–8541.
  • Wohlers, J., Engel, A., Zollner, E., Breithaupt, P., Jürgens, K., Hoppe, H.G., Sommer, U. & Riebesell, U. (2009). Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences of the United States of America, 106: 7067–7072.
  • Wood, A.M. & Van Valen, L.M. (1990). Paradox lost? On the release of energy-rich compounds by phytoplankton. Marine Microbial Food Webs, 4: 103–116.
  • Wolfe, G.V. & Steinke, M. (1996). Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnology and Oceanography, 41: 1151–1160.
  • Wolfe, G.V., Steinke, M. & Kirst, G.O. (1997). Grazing-activated chemical defence in a unicellular marine alga. Nature, 387: 894–897.
  • Wurl, O. & Sin, T.M. (2009). Analysis of dissolved and particulate organic carbon with the HTCO technique. In Practical guidelines for the analysis of seawater (Wurl, O., editor), 33–48. CRC Press, Boca Raton, FL.
  • Xu, Y., Boucher, J.M. & Morel, F.M.M. (2010). Expression and diversity of alkaline phosphatase EHAP1 in Emiliania huxleyi (Prymnesiophyceae). Journal of Phycology, 46: 85–92.
  • Yamada, N. & Suzumura, M. (2010). Effects of seawater acidification on hydrolytic enzyme activities. Journal of Oceanography, 66: 233–241.
  • Yamasaki, Y., Shikata, T., Nukata, A., Ichiki, S., Nagasoe, S., Matsubara, T., Shimasaki, Y., Nakao, M., Yamaguchi, K., Oshima, Y., Oda, T., Ito, M., Jenkinson, I.R., Asakawa, M. & Honjo, T. (2009). Extracellular polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME Journal, 3: 808–817.
  • Zlotnik, I. & Dubinsky, Z. (1989). The effect of light and temperature on DOC excretion by phytoplankton. Limnology and Oceanography, 34: 831–839.
  • Zubkov, M.V., Tarran, G.A. & Fuchs, B.M. (2004). Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre. FEMS Microbiology Ecology, 50: 153–161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.