3,544
Views
37
CrossRef citations to date
0
Altmetric
Articles

Programmed cell death is induced by hydrogen peroxide but not by excessive ionic stress of sodium chloride in the unicellular green alga Chlamydomonas reinhardtii

, , &
Pages 422-438 | Received 22 Sep 2014, Accepted 28 Mar 2015, Published online: 14 Sep 2015

REFERENCES

  • Abogadallah, G.M., Serag, M. & Quick, W.P. (2010). Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild type parents under salt stress. Physiologia Plantarum, 138: 60–73.
  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105: 121–126.
  • Affenzeller, M.J., Darehshouri, A., Andosch, A., Lütz, C. & Lütz-Meindl, U. (2009). Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. Journal of Experimental Botany, 60: 939–954.
  • Akça, Y. & Samsunlu, E. (2012). The effect of salt stress on growth, chlorophyll content, proline and nutrient accumulation, and K/Na ratio in walnut. Pakistan Journal of Botany, 44: 1513–1520.
  • Alscher, R.G., Erturk, N. & Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53: 1331–1341.
  • Ameisen, J.C., Idziorek,T., Billaut-Mulot, O., Loyens, M., Tissier, J-P., Potentier, A. & Ouaissi, A. (1995). Apoptosis in a unicellular eukaryote (Trypanozoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death and Differentiation, 2: 285–300.
  • Amor, Y., Babiychuk, E., Inzé, D. & Levine, A. (1998). The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Letter, 440: 1–7.
  • Andronis, E.A. & Roubelakis-Angelakis, K.A. (2010). Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. Planta, 231: 437–48.
  • Apel, K. & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373–399.
  • Azad, A.K., Ishikawa, T., Sawa, Y. & Shibata, H. (2008). Intracellular energy depletion triggers programmed cell death during petal senescence in tulip. Journal of Experimental Botany, 59: 2085–2095.
  • Aziz, I. & Khan, M.A. (2001). Effect of seawater on the growth, ion content and water potential of Rhizophora mucronata Lam. Journal of Plant Research, 114: 369–373.
  • Bakondi, E., Bai, P., Szabó, É., Hunyadi, J., Gergely, P., Szabó, C. & Virág, L. (2002). Detection of poly(ADP-ribose) polymerase activation in oxidatively stressed cells and tissues using biotinylated NAD substrate. Journal of Histochemistry and Cytochemistry, 50: 91–98.
  • Beauchamp, C.H. & Fridovixh, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276–287.
  • Bidle, K.D. & Falkowski, P.G. (2004). Cell death in planktonic, photosynthetic microorganisms. Nature Reviews of Microbiology, 2: 643–655.
  • Bidle, K.A., Haramaty, L., Baggett, N., Nannen, J. & Bidle, K.D. (2010). Tantalizing evidence for caspase-like protein expression and activity in the cellular stress response of Archaea. Archives of Environmental Microbiology, 12: 1161–1172.
  • Bohnert, H.J., Su, H. & Shen, B. (1999). Molecular mechanisms of salinity tolerance. In Molecular Responses to Cold, Drought, Heat, and Salt Stress in Higher Plants (K. Shinozaki & K. Yamaguchi-Shinozaki, editors), pp. 29–62. R.G. Landes Company, Austin, TX.
  • Bortner, C.D. & Cidlowski, J.A. (1999). Caspase independent/dependent regulation of K +, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. Journal of Biological Chemistry, 274: 21953–21962.
  • Boyer, J.S. (1982). Plant productivity and environment. Science, 218: 443–448.
  • Cai, L., Wang, H., Li, Q., Qian, Y. & Yao, W. (2008). Salidroside inhibits H2O2-induced apoptosis in PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Acta Biochimica Biophysica Sinica, 40: 796–802.
  • Casolo, V., Petrussa, E., Krajňáková, J., Macrì, F. & Vianello, A. (2005). Involvement of the mitochondrial K+ATP channel in H2O2- or NO- induced programmed death of soybean suspension cell cultures. Journal of Experimental Botany, 56: 997–1006.
  • Chen, J., Shiyab, S., Han, F.X., Monts, D.L., Waggoner, C.A., Yang, Z.M. & Su, Y. (2009). Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology, 18: 110–121.
  • Chen, Z., Newman, I., Zhou, M., Mendham, N., Zhang, G. & Shabala, S. (2005). Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environment, 28: 1230–1246.
  • Chen, Z., Cuin, T.A., Zhou, M., Twomey, A., Naidu, B.P. & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58: 4245–4255.
  • Choi, K., Kim, J., Kim, G.W. & Choi, C. (2009). Oxidative stress-induced necrotic cell death via mitochondria-dependent burst of reactive oxygen species. Curr Neurovasc Res., 6: 213–222.
  • Cobb, J.P., Hotchkiss, R.F., Karl, I.E. & Buchman. T.G. (1996). Mechanisms of cell injury and death. British Journal of Anaesthesia, 77: 3–10.
  • Cole, N.B., Daniels, M.P., Levine, R.L. & Kim, G. (2010). Oxidative stress causes reversible changes in mitochondrial permeability and structure. Experimental Gerontology, 45: 596–602.
  • Criddle, D.N., Gillies, S., Baumgartner-Wilson, H.K., Jaffar, M., Chinje, E.C., Passmore, S., Chvanov, M., Barrow, S., Gerasimenko, O.V., Tepikin, A.V., Sutton, R. & Petersen, O.H. (2006). Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. Journal of Biological Chemistry, 281: 40485–40492.
  • Cuin, T.A., Betts, S.A., Chalmandrier, R. & Shabala, S. (2008). A root’s ability to retain K+ correlates with salt tolerance in wheat. Journal of Experimental Botany, 59: 2697–2706.
  • Cuin, T. A., Zhou, M., Parsons, D. & Shabala, S. (2011). Genetic behaviour of physiological traits conferring cytosolic K+/Na+ homeostasis in wheat. Plant Biology, 14: 438–446.
  • Danon, A. & Gallois, P. (1998). UV-C radiation induced apoptotic like changes in Arabidopsis thaliana. FEBS Letter, 437: 131–136.
  • Danon, A., Rotari, V.I., Gordon, A., Mailhac, N. & Gallois, P. (2004). Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, pp35 and Defender against apoptotic death. Journal of Biological Chemistry, 279: 779–787.
  • Darehshouri, A., Affenzeller, M. & Lütz, M.U. (2008). Cell death upon H2O2 induction in the unicellular green alga Micrasterias. Plant Biology, 10: 732–45.
  • Das, M., Mukherjee, S.B. & Shaha, C. (2001). Hydrogen peroxide induces apoptosis like death in Leishmania donovani promastigotes. Journal of Cell Science, 114: 2461–2469.
  • de Pinto, M.C., Paradiso, A., Leonetti, P. & De Gara, L. (2006). Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant Journal, 48: 784–95.
  • del Pozo, O. & Lam, E. (1998). Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Current Biology, 8: 1129–1132.
  • del Río, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M. & Barroso, J.B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes, production, scavenging, and role in cell signaling. Plant Physiology, 141: 330–335.
  • Delledone, M., Zeier, J., Marocco, A. & Lamb, C, (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences USA, 98: 13454–13459.
  • Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S.J., Miller, A.J., Shabala, S., Sokolik, A. & Yurin, V. (2010). Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 123: 1468–1479.
  • Dimova, E.G., Bryant, P.E. & Chankova, S.G. (2008). Adaptive response – some underlying mechanisms and open questions. Genetics and Molecular Biology, 31: 396–408.
  • Drew, M.C., He, C.J. & Morgan, P.W. (2000). Programmed cell death and aerenchyma formation in roots. Trends in Plant Science, 5: 123–127.
  • Durand, P.M., Rashidi, A. & Michod, R.E. (2011). How an organism dies affects the fitness of its neighbours. American Naturalist, 177: 224–232.
  • Elbaz, A., Wei, Y.Y., Meng, Q., Zheng, Q. & Yang, Z.M. (2010). Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology, 19: 1285–1293.
  • Fahrenkrog, B., Sauder, U. & Aebi, U. (2004). The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. Journal of Cell Science, 117: 115–126.
  • Fischer, U., Janicke, R.U. & Schulze-Osthoff, K. (2003). Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death and Differentiation, 10: 76–100.
  • Franklin, D.J. & Berges, J.A (2004). Mortality in cultures of the dinoflagellate Amphidinium carterae during culture senescence and darkness. Proceedings of the Royal Society B: Biological Science, 271: 2099–2107.
  • Franklin, D.J., Brussaard, C.P.D. & Berges, J.A. (2006). What is the role and nature of programmed cell death in phytoplankton ecology? European Journal of Phycology, 41: 1–14.
  • Garthwaite, A.J., von Bothmer, R. & Colmer, T.D. (2005). Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl– into the shoots. Journal of Experimental Botany, 56: 2365–2378.
  • Gechev, T.S. & Hille, J. (2005). Hydrogen peroxide as a signal controlling plant programmed cell death. Journal of Cell Biology, 168: 17–20.
  • Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I. & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, 11: 1091–1101.
  • Giannattasio, S., Guaragnella, N., Corte-Real, M., Passarella, S. & Marra, E. (2005). Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene, 354: 93–98.
  • Goldstein, J.C., Waterhouse, N.J., Juin, P., Evan, G.I., and Green, D.R. (2000). The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biology, 2: 156–162.
  • Guangfeng, K., Cuijan, S., Xiaofei, W., Qiuju, X., Min, W., Xinlei, W. & Jinlai, M. (2012). Acclimatory responses to high-salt stress in Chlamydomonas (Chlorophyta, Chlorophyceae) from Antarctica. Acta Oceanologica Sinica, 31: 116–124.
  • Hanikenne, M. (2003). Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. New Phytologist, 159: 331–340.
  • Hardwick, J.M. & Cheng, W.C. (2004). Mitochondrial programmed cell death pathways in yeast. Developmental Cell, 7: 630–632.
  • Harris, E.H. (2001). Chlamydomonas as a model organism. Annual Review of Plant Physiology and Plant Molecular Biology, 52: 363–406.
  • Haworth, R.A. & Hunter, D.R. (1979). The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Archives of Biochemistry and Biophysics, 195: 460–467.
  • He, X.Q., Hui, J., Xi-long, H. & Qiao-ling, L. (2013). Adverse effect of H2O2 change on morphology, mitochondrial membrane permeability and antioxidant enzyme in root of Dianthus chinensis L. under salt stress. Advance Journal of Food Science and Technology, 5: 445–448.
  • Hema, R., Senthil-Kumar, M., Shivakumar, S., Chandrasekhara Reddy, P. & Udayakumar, M. (2007). Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta, 226: 655–670.
  • Holler, N., Zaru, R., Micheau, O., Thome, M., Attinge, A., Valitutti, S., Bodmer, J.L., Schneider, P., Seed, B. & Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology, 1: 489–495.
  • Houot, V., Etienne, P., Petitot, A-S., Barbier, S., Blein, J-P. & Suty, L. (2001). Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose dependent manner. Journal of Experimental Botany, 52: 1721–1730.
  • Huh, G.H., Damsz, B., Matsumoto, T.K., Muppala, P.R., Rus, A.M., Ibeas, J.I., Meena, L. Narasimhan, R., Bressan, A. & Hasegawa, P.M. (2002). Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant Journal, 29: 649–659.
  • Hunter, D.R. & Haworth, R.A. (1979a). The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Archives of Biochemistry and Biophysics, 195: 453–459.
  • Hunter, D.R. & Haworth, R.A. (1979b). The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Archives of Biochemistry and Biophysics, 195: 468–477.
  • Hunter, D.R., Haworth, R.A. & Southard, J.H. (1976). Relationship between configuration, function, and permeability in calcium-treated mitochondria. Journal of Biological Chemistry, 251: 5069–5077.
  • Jackson, M.B. & Armstrong, W. (1999). Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1: 1438–8677.
  • Jiang, D., Jha, N., Boonplueang, R. & Andersen, J.K. (2001). Caspase 3 inhibition attenuates hydrogen peroxide-induced DNA fragmentation but not cell death in neuronal PC12 cells. Journal of Neurochemistry, 76: 1745–1755.
  • Jianga, Z.Y., Woollarda, A.C.S. & Wolff, S.P. (1990). Hydrogen peroxide production during experimental protein glycation. FEBS Letter, 268: 69–71.
  • Jian-Ming, L., Qian, H.Z. & Xiao, C.G-X. (2003). Role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells. World Journal of Gastroenterology, 9: 562–567.
  • Kallio, A., Zheng, A., Dahllund, J., Heiskanen, K.M. & Härkönen, P. (2005). Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis, 10: 1395–1410.
  • Khona, D.K., Rao, V.G., Motiwalla, M.J., Varma, P.C., Kashyap, A.R., Das, K., Shirolikar, S.M., Borde, L., Dharmadhikari, J.A., Dharmadhikari, A.K., Mukhopadhyay, S., Mathur, D. & D’Souza, J.S. (2013). Anomalies in the motion dynamics of long-flagella mutants of Chlamydomonas reinhardtii. Journal of Biological Physics, 39: 1–14.
  • Kim, J-S., He, L. & Lemasters, J.J. (2003). Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochemical and Biophysical Research Communications, 304: 463–470.
  • Kim, Y.A., Xiao, D., Xiao, H., Powolny, A.A., Lew, K.L., Reilly, M.L., Zeng, Y., Wang, Z. & Singh, S.V. (2007). Mitochondria mediated apoptosis by diallyl trisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak. Molecular Cancer Therapeutics, 6: 1599–1609.
  • Kirschnek, S., Scheffel, J., Heinzmann, U. & Häcker, G. (2004). Necrosis-like cell death induced by bacteria in mouse macrophages. European Journal of Immunology, 34: 1461–1471.
  • Kolodkin-Gal, I., Hazan, R., Gaathon, A., Carmeli, S. & Engelberg-Kulka, H. (2007). A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science, 318: 652–655.
  • Krause, M. & Durner, J. 2004. Harpin activates mitochondria in Arabidopsis suspension cells. American Phytopathological Society, 2: 131–139.
  • Kressel, M. & Groscurth, P. (1994). Distinction of apoptotic and necrotic cell death by in situ labeling of fragmented DNA. Cell and Tissue Research, 278: 549–556.
  • Krishnamurthy, K.V., Krishnaraj, R., Chozhavendan, R. & Samuel, F.C. (2000). The program of cell death in plants and animals – a comparison. Current Science, 79: 1169–1181.
  • Krysko, D.V., Vanden Berghe, T., Parthoens, E., D’Herde, K. & Vandenabeele, P. (2008). Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods in Enzymology, 442: 307–341.
  • Lee, N., Berthelot, S., Debrabant, A., Muller, J., Duncan, R. & Nakhasi, H.L. (2002). Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death and Differentiation, 9: 53–64.
  • Leist, M. & Jaattela, M. (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nature Reviews Molecular Cell Biology, 2: 589–598.
  • Lewis, K. (2000). Programmed death in bacteria. Microbiology and Molecular Biology Reviews, 64: 503–514.
  • Li, J.M., Zhou, H., Cai, Q. & Xiao, G.X. (2003). Role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells. World Journal of Gastroenterology, 9: 562–567.
  • Li, J.Y., Jiang, A.L. & Zhang, W. (2007). Salt stress-induced programmed cell death in rice root tip cells. J. Integr. Biol, 49: 481–486.
  • Li, Z., Yang, H., Wu, X., Guo, K. & Li, J. (2014). Some aspects of salinity responses in peppermint (Mentha x pipertia L.) to NaCl treatment. Protoplasma, Nov 12. [Epub ahead of print].
  • Lin, J., Wang, Y. & Wang, G. (2005). Salt stress-induced programmed cell death via Ca2+-mediated mitochondrial permeability transition in tobacco protoplasts. Plant Growth Regulation, 4: 243–250.
  • Lin, J., Wang, Y. & Wang, G. (2006). Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. Journal of Plant Physiology, 163: 731–739.
  • Logan, D.C. (2006). The mitochondrial compartment. Journal of Experimental Botany, 57: 1225–43.
  • López, E., Arce, C., Oset-Gasque, M.J., Cañ adas, S. & González, M.P. (2006). Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radical Biology and Medicine, 40: 940–951.
  • Loor, G., Kondapalli, J., Schriewer, J.M., Chandel, N.S., Vanden Hoek, T.L. & Schumacker, P.T. (2010). Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radical Biology and Medicine, 49: 1925–36.
  • LoSchiavo, F., Baldan, B., Compagnin, D., Ganz, R., Mariani, P. & Terzi, M. (2000). Spontaneous and induced apoptosis in embryogenic cell cultures of carrot (Daucus carota L.) in different physiological states. European Journal of Cell Biology, 79: 294–298.
  • Ma, H.Y. & Yang, H.Q. (2006). The effect of exogenous H2O2 on mitochondrial membrane permeability and cell nuclear DNA in roots of Malus hupehensis. Journal of Plant Physiology and Molecular Biology, 32: 551–556.
  • Madeo, F., Engelhardt, S., Herker, E., Lehmann, N., Maldener, C., Proksch, A., Wissing, S. & Frohlich, K.U. (2002). Apoptosis in yeast: a new model system with applications in cell biology and medicine. Current Genetics, 41: 208–216.
  • Mahajan, S. & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444: 139–158.
  • Malerba, M., Cerana, R. & Crosti, P. (2003). Fusicoccin induces in plant cells a programmed cell death showing apoptotic features. Protoplasma, 222: 113–6.
  • Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J.M., Susin, S.A., Vieira, H.L., Prevost, M.C., Xie, Z., Matsuyama, S., Reed, J.C. & Kroemer, G. (1998). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science, 281: 2027–2031.
  • Mastrobuoni, G., Irqanq, S., Pietzke, M., Assmus, H.E., Wenzel, M., Schulze, W.X. & Kempa, S. (2012). Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMC Genomics, 31: 13: 215.
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment, 33: 453–467.
  • Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9: 490–498.
  • Moharikar, S., D’Souza, J.S., Kulkarni, A.B. & Rao, B.J. (2006). Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analysis. Journal of Phycology, 42: 423–433.
  • Moharikar, S., D’Souza, J.S. & Rao, B.J. (2007). A homologue of the defender against the apoptotic death gene (dad1) in UV-exposed Chlamydomonas cells is down regulated with the onset of programmed cell death. Journal of Biosciences, 32: 261–270.
  • Monetti, E., Kadono, T., Tran, D., Azzarello, E., Arbelet-Bonnin, D., Biligui, B., Briand, J., Kawano, T., Mancuso, S. & Bouteau, F. (2014). Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells. Journal of Experimental Botany, 65: 1361–1375.
  • Moradas-Ferreira, P., Costa, V., Piper, P. & Mager, W. (1996). The molecular defences against reactive oxygen species in yeast. Molecular Microbiology, 19: 651–658.
  • Morel, J.B. & Dangl, J.L. (1997). The hypersensitive response and the induction of cell death in plants. Cell Death and Differentiation, 4: 671–683.
  • Murik, O. & Kaplan, A. (2009). Paradoxically, prior acquisition of antioxidant activity enhances oxidative stress-induced cell death. Environmental Microbiology, 11: 2301–2309.
  • Murik, O., Elboher, A. & Kaplan, A. (2014). Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. New Phytologist, 202: 471–484.
  • Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22: 867–880.
  • Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R.J., Matsuda, H. and Tsujimoto, Y. (1998). Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proceedings of the National Academy of Sciences USA, 95: 14681–14686.
  • Nedelcu, A.M. (2009). Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery. Journal of Molecular Evoloution, 68: 256–268.
  • Nedelcu, A.M., Driscoll, W.W., Durand, P.M., Herron, M.D. & Rashidi, A. (2011). On the paradigm of altruistic suicide in the unicellular world. Evolution, 65: 3–20.
  • Pallavi, S., Ambuj, B.J., Rama, S.D. & Mohammad, P. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 1–26. doi:10.1155/2012/217037.
  • Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W. & Farber, J.L. (1998). The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. Journal of Biological Chemistry, 273: 7770–7775.
  • Pérez-Pérez, M.E., Florencio, F.J. & Crespo, J.L. (2010). Inhibition of TOR signalling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiology, 152: 1874–1888.
  • Ramos, J., Lopez, M.J. & Benlloch, M. (2004). Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant and Soil, 259: 163–168.
  • Rodrigo-Moreno, A., Poschenrieder, C. & Shabala, S. (2013). Transition metals. A double edge sward in ROS generation and signalling. Plant Signalling and Behaviour, 8: e23425.
  • Rottner, M., Tual-Chalot, S., Ahmed, H.M., Andriantsitohaina, R., Freyssinet, J.M. & Martínez, M.C. (2011). Increased oxidative stress induces apoptosis in human cystic fibrosis cells. PLoS ONE, 6: e24880.
  • Saghai-Maroof, M.A., Soliman, K.M., Jorgesen, R.A. & Allard, R.W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proceedings of the National Academy Sciences USA, 81: 8014–8018.
  • Segovia, M., Haramaty, L., Berges, J.A., Falkowski, P. G. (2003). Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiology, 132: 99–105.
  • Shabala, S. & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Phyisologia Plantarum, 151: 257–279.
  • Shabala, S., Cuin, T.A., Prismall, L. & Nemchinov, L.G. (2007). Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta, 227: 189–197.
  • Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J of Bot, doi:10.1155/2012/21703.
  • Shemarova, I.V. (2010). Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Bioogy, 155: 341–353.
  • Shrivastava, A., Tiwari, M., Sinha, R.A., Kumar, A., Balapure, A.K., Bajpai, V.K., Sharma, R., Mitra, K., Tandon, A. & Godbole, M.M. (2006). Molecular iodine induces caspase-independent apoptosis in human breast carcinoma cells involving hemitochondria-mediated pathway. Journal of Biological Chemistry, 4: 19762–19771.
  • Singh, S.V., Choi, S., Zeng, Y., Hahm, E. & Xiao, D. (2007). Guggulsterone-induced apoptosis in human prostate cancer cells is caused by reactive oxygen intermediate-dependent activation of c-Jun NH2-terminal kinase. Cancer Research, 67: 7439–7449.
  • Sirisha, V.L., Sinha, M. & D’Souza, J.S. (2014). Menadione-induced caspase-dependent programmed cell death in the green chlorophyte Chlamydomonas reinhardtii. Journal of Phycology, 50: 587–601.
  • Smethurst, C.F., Rix, K., Garnett, T., Auricht, G., Bayart, A., Lane, P., Wilson, S.J. & Shabala, S. (2008). Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms. Functional Plant Biology, 35: 640–650.
  • Sugiyama, M., Ito, J., Aoyagi, S. & Fukuda, H. (2004). Endonucleases. Plant Molecular Biology, 44: 387–397.
  • Sun, L., Yau, H.Y., Wong, W.Y., Li, R.A., Huang, Y. & Yao, X. (2012). Role of TRPM2 in H2O2-induced cell apoptosis in endothelial cells. Plos ONE, 7: e43186. doi:10.1371/journal.pone.0043186.
  • Sun, Y.L., Zhu, H.Z., Zhou, J., Dal, Y.R. & Zhai, Z-H. (1999b). Menadione-induced apoptosis and degradation of lamin-like proteins in tobacco protoplasts. Cellular and Molecular Life Sciences, 55: 310–316.
  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P. & McDonald, G.K. (2011). Additive effects of a+ and Cl– ions on barley growth under salinity stress. Journal of Experimental Botany, 62: 2189–2203.
  • Tchernov, D., Kvitt, H., Haramaty, L., Bibby, T.S., Gorbunov, M.Y., Rosenfeld, H. & Falkowski, P.G. (2011). Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proceedings of the National Academy of Sciences USA, 108: 9905–9909.
  • Teixeira de Mattos, M.J. & Neijssel, O.M. (1997). Bioenergetic consequences of microbial adaptation to low-nutrient environments. Journal of Biotechnology, 59: 117–126.
  • Tewari, M., Quan, L.T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salvesen, G.S. & Dixit, V.M. (1995). Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell, 81: 801–809.
  • Thornberry, N.A. & Lazebnik, Y. 1998. Caspases: enemies within. Science, 281: 1312–1316.
  • Tian, R., Zhang, G., Yan, C. & Dai, Y. (2000). Involvement of poly(ADP-ribose) polymerase and activation of caspase-3- like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS Letter, 474: 11–15.
  • Torriglia, A., Chaudun, E., Courtois, Y. & Counis, M.F. (1997). On the use of Zn2+ to discriminate endonucleases activated during apoptosis. Biochimie, 79: 435–438.
  • Turan, S. & Tripathy, B.C. (2012). Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma, 250: 209–222. doi:10.1007/s00709-012-0395-5.
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods of Enzymology, 428: 419–438.
  • Urzica, E.I., Adler, L.N., Page, M., Linster, C.L., Arbing, M.A., Casero, D., Pellegrini, M., Merchant, S.S. & Clarke, S.G. (2012). Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. Journal of Biological Chemistry, 287: 14234–14245.
  • Vardi, A., Berman-Frank, I., Rozenberg, T., Hadas, O., Kaplan, A. & Levine, A. (1999). Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Current Biology, 9: 1061–1064.
  • Vega, J.M., Garbayo, I., Domínguez, M.J. & Vigara, J. (2006). Effect of abiotic stress on photosynthesis and respiration in Chlamydomonas reinhardtii induction of oxidative stress. Enzyme and Microbial Technology, 40: 163–167.
  • Vercammen, D., Brouckaert, G., Denecker, G., Van de Craen, M., Declercq, W., Fiers, W. & Vandenabeele, P. (1998). Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. Journal of Experimental Medicine, 188: 919–930.
  • Walter, D., Wissing, S., Madeo, F. & Fahrenkrog, B. (2006). The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. Journal of Cell Science, 119: 1843–1851.
  • Wang, H., Li, J., Bostock, R.M. & Gilchrist, D.G. (1996b). Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. The Plant Cell, 8: 375–391.
  • Wang, J., Li, X., Liu, Y. & Zhao, X. (2010). Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. Journal of Plant Physiology, 167: 1145–1151.
  • Wang, M., Oppedijk, B.J., Lu, X., Van Duijn, B. & Schilperoort, R.A. (1996a). Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Molecular Biology, 32: 1125–1134.
  • Wijeratne, S.S.K., Cuppett, S.L. & Schlegel, V. (2005). Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. Journal of Agricultural and Food Chemistry, 53: 8768–8774.
  • Wissing, S., Ludovico, P., Herker, E., Buttner, S., Engelhardt, S.M., Decker, T., Link, A., Proksch, A., Rodrigues, F., Corte-Real, M., Frohlich, K.U., Manns, J., Cande, C., Sigrist, S.J., Kroemer, G. & Madeo, F. (2004). An AIF orthologue regulates apoptosis in yeast. Journal of Cell Biology, 166: 969–974.
  • Witzel, K., Weidner, A., Surabhi, G.K., Börner, A. & Mock, H.P. (2009). Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. Journal of Experimental Botany, 60: 3545–3557.
  • Xiong, L. & Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Environment, 25: 131–139.
  • Yamakawa, H., Ito, Y., Naganawa, T., Banno, Y., Nakashima, S., Yoshimura, S., Sawada, M., Nishimura, Y., Nozawa, Y. & Sakai, N. (2000). Activation of caspase-9 and -3 during H2O2-induced apoptosis of PC12 cells independent of ceramide formation. Neurological Research, 6: 556–64.
  • Yang, P-M., Chen, H-C., Tsai, J-S. & Lin, L-Y. (2007). Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kB activity. Chemical Research in Toxicology, 20: 406–415.
  • Yazdani, M. & Mahdieh, M. (2012). Salinity induced apoptosis in root meristematic cells of rice. International Journal of Bioscience, Biochemistry and Bioinformatics, 2: 40–43.
  • Yin, L., Stearns, R. & González-Flecha, B. (2005). Lysosomal and mitochondrial pathways in H2O2-induced apoptosis of alveolar type II cells. Journal of Cell Biochemistry, 94: 433–445.
  • Yordanova, Z.P., Kapchina-Toteva, V.M., Woltering, E.J., Cristescu, S.M., Harren, F.J.M. & Iakimova, E.T. (2009). Mastoparan-induced cell death signalling in Chlamydomonas reinhardtii. Biotechnology and Biotechnology Equipment, 23: 730–734.
  • Yordanova, Z.P., Iakimova, E.T., Cristescu, S.M., Harren, F.J.M., Kapchina-Toteva, V.M. & Woltering, E.J. (2010). Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii. Cell Biology International, 34: 301–308.
  • Yordanova, P.Z., Woltering, J.E., Kapchina-Toteva, M.V. & Iakimova, E.T. (2013). Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii. Annals of Botany, 111: 191–205.
  • Yoshida, K., Igarashi, E., Mukai, M., Hirata, K. & Miyamoto, K. (2003). Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environment, 26: 451–457.
  • Yoshida, K., Igarashi, E., Wakatsuki, E., Miyamoto, K. & Hirata, K. (2004). Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Science, 167: 1335–1341.
  • Zákány, R., Bakondi, E., Juhász, T., Matta, C., Szíjgyártó, Z., Erdélyi, K., Szabó, É., Módis, L., Virág, L. & Gergely, P. (2007). Oxidative stress-induced poly(ADP-ribosyl)ation in chick limb bud-derived chondrocytes. International Journal of Molecular Medicine, 19: 597–605.
  • Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247–273.
  • Zong, W-X. & Thompson, C.B. (2006). Necrotic death as a cell fate. Genes and Development, 20: 1–15.
  • Zuo, Z., Zhu, Y., Bai, Y. & Wang, Y. (2012). Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. Plant Physiology and Biochemistry, 51: 175–184.
  • Zuppini, A., Andreoli, C. & Balda, B. (2007). Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiology, 48: 1000–9.
  • Zuppini, A., Gerotto, C. & Baldan, B. (2010). Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte. Plant Cell Physiology, 51: 884–895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.