592
Views
8
CrossRef citations to date
0
Altmetric
Articles

Unravelling the complexity of salt marsh ‘Fucus cottonii’ forms (Phaeophyceae, Fucales)

, , , , ORCID Icon, & show all
Pages 360-370 | Received 13 Sep 2016, Accepted 24 Feb 2017, Published online: 25 May 2017

References

  • Belkhir, K., Borsa, P., Goudet, J., Chikhi, L. & Bonhomme, F. (2001). GENETIX 4.02, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions: CNRS UMR 5000, Université de Montpellier II, Montpellier.
  • Bennetzen, J.L., Jianxin, M.A. & Devos, K.M. (2005). Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 95: 127–132.
  • Bergström, L., Tatarenkov, A., Johannesson, K., Jönsson, R.B. & Kautsky, L. (2005). Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae). Journal of Phycology, 41: 900–905.
  • Birchler, J.A. (2012). Genetic consequences of polyploidy in plants. In Polyploidy and Genome Evolution (Soltis, P.S. & Soltis, D.E., editors), 21–32. Springer-Verlag, Berlin-Heidelberg.
  • Burrows, E.M. & Lodge, S. (1951). Autecology and the species problem in Fucus. Journal of the Marine Biological Association of the United Kingdom, 30: 161–176.
  • Cánovas, F.G., Mota, C.F., Serrão, E.A. & Pearson, G.A. (2011). Driving south: a multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation. BMC Evolutionary Biology, 11: 371.
  • Clowes, A.W., Reidy, M.A. & Clowes, M.M. (1983). Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in absence of endothelium. Laboratory Investigation, 49: 327–333.
  • Cotton, A.D. (1912). Marine algae. In A Biological Survey of Clare Island in the County of Mayo, Ireland and of the Adjoining District (Praeger, R. L. editor), 1–178. Ireland: Hodges, Figgis and Co., Ltd. Sections 1–3, part 15, vol.31.
  • Coyer, J.A., Hoarau, G., Pearson, G.A., Serrão, E.A., Stam, W.T. & Olsen, J.L. (2006). Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus. Biology Letters, 2: 405–408.
  • Coyer, J.A., Hoarau, G., Beszerti, B., Pearson, G. & Olsen, J.L. (2009). Expressed sequence tag derived polymorphic SSR markers for Fucus serratus and amplification in other species of Fucus. Molecular Ecology Resources, 9: 168–170.
  • Coyer, J.A., Hoarau, G., Costa, J.F., Hogerdijk, B., Serrão, E.A., Billard, E., Valero, M., Pearson, G. & Olsen, J.L. (2011). Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Molecular Phylogenetics and Evolution, 58: 283–296.
  • De Strome, N. & Mason, A. (2014). Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology, 1: 10–33.
  • Earl, D.A. & vonHoldt, B.M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4: 359–361.
  • Engel, C.R., Brawley, S., Edwards, K.J. & Serrão, E. (2003). Isolation and cross-species amplification of microsatellite loci from the fucoid seaweeds Fucus vesiculosus, F. serratus, and Ascophyllum nodosum (Heterokontophyta, Fucaceae). Molecular Ecology Notes, 3: 180–182.
  • Engel, C.R., Daguin, C. & Serrão, E. (2005). Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Molecular Ecology, 14: 2033–2046.
  • Evanno, G., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611–2620.
  • Feldmann, J. (1941). Sur une nouvelle espèce de Fucus de la côte Basque: Fucus chalonii nov. sp. Bulletin de la Société Botanique de France, 88: 143–147.
  • Gao, H., Williamson, S. & Bustamante, C.D. (2007). A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics, 176: 1635–1651.
  • Gómez Garreta, A., Ribera Siguan, M.A., Salvador Soler, N., Rull Lluch, J. & Kapraun, D.F. (2010). Fucales (Phaeophyceae) from Spain characterized by large-scale discontinuous nuclear DNA contents consistent with ancestral cryptopolyploidy. Phycologia, 49: 64–72.
  • Husband, B.C., Baldwin, S.J. & Suda, J. (2013). The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In Plant Genome Diversity Vol. 2 (Leitch, I.J., Greilhuber, J., Dolezel, J. & Wendel, J.F., editors), 255–277. Springer-Verlag, Vienna.
  • Jombart, T. (2008). ADEGENET: an R package for the multivariate analysis of genetic markers. Bioinformatics, 24: 1403–1405.
  • Jombart, T., Devillard, S. & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11: 94.
  • Kapraun, D.F. (2005). Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. Annals of Botany, 95: 7–44.
  • Kopelman, N.M., Mayze, J., Jakobsson, M., Rosenberg, N.A. & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15: 1179–1191.
  • Leitch, I.J. & Bennett, M.D. (2004). Genome downsizing in polyploid plants. Biological Journal of the Linnean Society, 82: 651–663.
  • Leitch, I.J. & Leitch, A.R. (2013). Genome size diversity and evolution in land plants. In Plant Genome Diversity Vol. 2 (Leitch, I.J., Greilhuber, J., Dolezel, J. & Wendel, J.F., editors), 307–322. Springer-Verlag, Vienna.
  • Mason, A.S. & Pires, J.C. (2015). Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends in Genetics. doi: 10.1016/j.tig.2014.09.011.
  • Mathieson, A.C., Clinton, J.D., Wallace, A.L. & Klein, A.S. (2006). Distribution, morphology, and genetic affinities of dwarf embedded Fucus populations from the Northwest Atlantic Ocean. Botanica Marina, 49: 283–303.
  • Mirouze, M. & Paszkowski, J. (2011). Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology, 14: 267–274.
  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590.
  • Neiva, J., Hansen, G.I., Pearson, G.A., Van De Vliet, M.S., Maggs, C.A. & Serrão, E.A. (2012). Fucus cottonii (Fucales, Phaeophyceae) is not a single genetic entity but a convergent salt-marsh morphotype with multiple independent origins. European Journal of Phycology, 47: 461–468.
  • Pereyra, R.T., Bergström, L., Kautsky, L. & Johannesson, K. (2009). Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evolutionary Biology, 9: 70.
  • Peters, A.F., Marie, D., Scornet, D., Kloareg, B. & Cock, J.M. (2004). Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. Journal of Phycology, 40: 1079–1088.
  • Phillips, N., Kapraun, D.F., Garreta, A.G., Siguan, M.A.R., Rull, J.L., Soler, N.S., Lewis, R. & Kawai, H. (2011). Estimates of nuclear DNA content in 98 species of brown algae (Phaeophyta). AoB PLANTS, 2011: plr001. doi: 10.1093/aobpla/plr001.
  • Piegu, B., Guyot, R., Picault, N., Roulin, A., Saniyal, A., Kim, H., Collura, K., Brar, D.S., Jackson, S., Wing, R.A. & Panaud, O. (2006). Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Research, 16: 1262–1269.
  • Pritchard, J.K., Stephens, P. & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.
  • Puttick, M.N., Clark, J. & Donoghue, C.J. (2015). Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. Proceedings of the Royal Society B, 282: 20152289. org/10.1098/rspb.2015.2289.
  • Rosenberg, N.A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4: 137–138.
  • Sheehy Skeffington, M.J. & Curtis, T.G.F. (2000). The Atlantic element in Irish salt marshes. In Biodiversity: The Irish dimension (Rushton, B.S., editor), 179–196. Royal Irish Academy, Dublin.
  • Šmarda, P. & Bureš, P. (2010). Understanding intraspecific variation in genome size in plants. Preslia, 82: 41–61.
  • Song, Q. & Chen, Z.J. (2015). Epigenetic and developmental regulation in plant polyploids. Current Opinion in Plant Biology, 24: 101–109.
  • Tayalé, A. & Parisod, C. (2013). Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenetic and Genome Research, 140: 79–96.
  • Wallace, A.L., Klein, A.S. & Mathieson, A.C. (2004). Determining the affinities of salt marsh fucoids using microsatellite markers: evidence of hybridization and introgression between two species of Fucus (Phaeophyta) in a Maine estuary. Journal of Phycology, 40: 1013–1027.
  • Weir, B.S. & Cockerham, C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358–1370.
  • Wright, S. (1969). Evolution and the Genetics of Populations, Vol. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago.
  • Wynne, M.J. & Magne, F. (1991). Concerning the name Fucus muscoides (Cotton) J. Feldmann et Magne. Cryptogamie, Algologie, 12: 55–65.
  • Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G. & Bhattacharya, D. A. (2004). Molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution, 21: 809–818.
  • Zardi, G.I., Nicastro, K.R., Canovas, F., Costa, J.F., Serrão, E.A. & Pearson, G.A. (2011). Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal zone. PLoS ONE, 6: 1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.