580
Views
5
CrossRef citations to date
0
Altmetric
Articles

Characterization of nutrient status of Halamphora luciae (Bacillariophyceae) using matrix-assisted ultraviolet laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)

, , , &
Pages 422-432 | Received 23 Jun 2017, Accepted 08 Feb 2018, Published online: 10 Jul 2018

References

  • Abida, H., Dolch, L.J., Meï, C., Villanova, V., Conte, M., Block, M.A., Finazzi, G., Bastien, O., Tirichine, L., Bowler, C., Rébeillé, F., Petroutsos, D., Jouhet, J. & Maréchal, E. (2015). Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiology, 167: 118–136.
  • Ai, X.X., Liang, J.R., Gao, Y.H., Lo, S.C.L., Lee, F.W.F., Chen, C.P., Luo, C.S. & Du, C. (2015). MALDI-TOF MS analysis of the extracellular polysaccharides released by the diatom Thalassiosira pseudonana under various nutrient conditions. Journal of Applied Phycology, 27: 673–684.
  • Albersheim, P., Nevins, D.J., English, P.D. & Karr, A. (1967). A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydrate Research, 5: 340–345.
  • Alekseeva, S.A., Shevchenko, N.M., Kusaykin, M.I., Ponomorenko, L.P., Isakov, V.V., Zvyagintseva, T.N. & Likhoshvai, E.V. (2005). Polysaccharides of diatoms occurring in Lake Baikal. Applied Biochemistry Microbiology, 41: 185–191.
  • Alipanah, L., Rohloff, J., Winge, P., Bones, A.M. & Brembu, T. (2015). Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. Journal of Experimental Botany, 66: 6281–6296.
  • Andrade, L.M., Mendes, M.A., Kowalski, P. & Nascimento, C.A.O. (2015). Comparative study of different matrix/solvent systems for the analysis of crude lyophilized microalgal preparations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 29: 295–303.
  • Armbrust, V. (2009).The life of diatoms in the world’s oceans. Nature, 459: 185–192.
  • Barnech Bielsa, G., Popovich, C., Rodríguez, M.C., Martínez, A.M., Martín, L., Matulewicz, M.C. & Leonardi, P. (2016). Simultaneous production assessment of triacylglycerols for biodiesel and exopolysaccharides as valuable co-products in Navicula cincta. Algal Research, 15: 120–128.
  • Barsanti, L., Passarelli, V., Evangelista, V., Frassanito, A.M. & Gualtieri, P. (2011). Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Natural Product Reports, 28: 457–466.
  • Beattie, A., Hirst, E.L. & Percival, E. (1961). Studies on the metabolism of the Chrysophyceae. Biochemical Journal, 79: 531–536.
  • Bowler, C., Vardi, A. & Allen, A.E. (2010). Oceanographic and biogeochemical insights from diatom genomes. Annual Review of Marine Science, 2: 333–365.
  • Brembu, T., Mühlroth, A., Alipanah, L. & Bones, A.M. (2017). The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions Royal Society B, 372: 20160406.
  • Caballero, M.A., Jallet, D., Shi, L., Rithner, C., Zhang, Y. & Peers, G. (2016). Quantification of chrysolaminarin from the model diatom Phaeodactylum tricornutum. Algal Research, 20: 180–188.
  • Chiovitti, A., Higgins, M.J., Harper, R.E., Wetherbee, R. & Bacic, A. (2003a). The complex polysaccharides of the raphid diatom Pinnularia viridis (Bacillariophyceae). Journal of Phycology, 39: 543–554.
  • Chiovitti, A., Bacic, A., Burke, J. & Wetherbee, R. (2003b). Heterogeneous xylose-rich glycans are associated with extracellular glycoproteins from the biofouling diatom Craspedostauros australis (Bacillariophyceae). European Journal of Phycology, 38: 351–360.
  • Chiovitti, A., Molino, P., Crawford, S.A., Teng, R., Spurck, T. & Wetherbee, R. (2004). The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. European Journal of Phycology, 39: 117–128.
  • Ciucanu, I. & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research, 131: 209–217.
  • Daglio, Y., Maidana, N.I., Matulewicz, M.C. & Rodríguez, M.C. (2016). Changes in motility and induction of enzymatic activity by nitrogen and phosphate deficiency in benthic Halamphora luciae (Bacillariophyceae) from Argentina. Phycologia, 55: 493–505.
  • Danielewicz, M.A., Anderson, L.A. & Franz, A.K. (2011). Triacylglycerol profiling of marine microalgae by mass spectrometry. Journal of Lipid Research, 52: 2101–2118.
  • De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B. & Vandamme, P. (2011). Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Systematic and Applied Microbiology, 34: 20–29.
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M. & Robledo, C.W. (2014). Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at: http://www.infostat.com.ar.
  • Emami, K., Hack, E., Nelson, A., Brain, C.M., Lyne, F.M. & Mesbahi, E. (2015). Proteomic-based biotyping reveals hidden diversity within a microalgae culture collection: an example using Dunaliella. Scientific Reports, 5: 2–15.
  • Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281: 237–240.
  • Giebel, R., Worden, C., Rust, S.M., Kleinheinz, G.T. & Robbins, M. (2010). Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): applications and challenges. Advances in Applied Microbiology, 71: 149–184.
  • Granum, E., Kirkvold, S. & Myklestad, S.M. (2002). Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Marine Ecology Progress Series, 242: 83–94.
  • Gügi, B., Le Costaouec, T., Burel, C., Lerouge, P., Helbert, W. & Bardor, M. (2015). Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Marine Drugs, 13: 5993–6018.
  • Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals (Smith, W.L. & Chanley, M.H., editors), 26–60. Plenum Press, New York, NY.
  • Hildebrand, M., Manandhar-Shrestha, K. & Abbriano, R. (2017). Effects of chrysolaminarin synthase knockdown in the diatom Thalassiosira pseudonana: implications of reduced carbohydrate storage relative to green algae. Algal Research 23, 66–77.
  • Hockin, N.L., Mock, T., Mulholland, F., Kopriva, S. & Malin, G. (2012). The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiology, 158: 299–312.
  • Jallet, D., Caballero, M.A., Gallina, A.A., Youngblood, M. & Peers, G. (2016). Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime. Algal Research, 18: 51–60.
  • Ju, Z., Ding, L., Zheng, Q., Wu, Z. & Zheng, F. (2011). Diatoms as a model system in studying lipid biosynthesis regulation. International Journal of Environmental Science and Development, 2: 493–495.
  • Kim, H.S., Hong, J.T., Kim, Y. & Han, S. (2011). Stimulatory effect of β-glucans on immune cells. Immune Network, 11: 191–195.
  • Knoshaug, E.P. & Darzins, A. (2011). Algal biofuels: the process. Chemical Engineering Progress, 107: 37–47.
  • Krishnamurthy, K.V. (1999). Fluorescence microscopic cytochemistry. In Methods in Cell Wall Cytochemistry (Krishnamurthy, K.V., editor), 151–176. CRC Press, Boca Raton, Florida.
  • Le Costaouec, T., Unamunzaga, C., Mantecon, L. & Helbert, W. (2017). New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Research, 26: 172–179.
  • Levitan, O., Dinamarca, J., Zelzion, E., Lun, D., Guerra, L.T., Kim, M.K., Kim, J., Van Mooy, B.A.S., Bhattacharyab, D. & Falkowski, P. (2015). Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proceedings of the National Academy of Sciences USA, 112: 412–417.
  • Liang, J.R., Ai, X.X., Gao, Y.H. & Chen, C.P. (2013). MALDI-TOF MS analysis of the extracellular polysaccharides released by the diatom Thalassiosira pseudonana. Journal of Applied Phycology, 25: 477–484.
  • Martín, L.A., Popovich, C.A., Martinez, A.M., Damiani, M.C. & Leonardi, P.I. (2016). Oil assessment of Halamphora coffeaeformis diatom growing in a hybrid two-stage system for biodiesel production. Renewable Energy, 92: 127–135.
  • McConville, M.J., Bacic, A. & Clarke, A.E. (1986). Structural studies of chrysolaminaran from the ice diatom Stauroneis amphioxys (Gregory). Carbohydrate Research, 153: 330–333.
  • Myklestad, S. (1989). Production, chemical structure, metabolism, and biological function of the (1→3)-Linked, β 3-D-glucans in diatoms. Biological Oceanography, 6: 313–326.
  • Nelson, D.M., Tréguer, P., Brzezinski, M.A., Leynaert, A. & Quéguiner, B. (1995). Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9: 359–372.
  • Ng, W. (2013). Teaching microbial identification with matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) and bioinformatics tools. Journal of Microbiology & Biology Education, 14: 103–106.
  • Nicolau, A., Santos, L., Santos, C. & Mota, M. (2014). Matrix assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS) applied to diatom identification: influence of culturing age. Aquatic Biology, 20: 139–144.
  • Nonami, H., Fukui, S. & Erra-Balsells, R. (1997). β-carbolinealkaloids as matrices for matrix-assisted ultraviolet laser desorption time-of-flight mass spectrometry of proteins and sulfated oligosaccharides: a comparative study using phenylcarbonyl compounds, carbazoles and classical matrices. Journal of Mass Spectrometry, 32: 287–296.
  • Obata, T., Fernie, A.R. & Nunes-Nesi, A. (2013). The central carbon and energy metabolism of marine diatoms. Metabolites, 3: 325–346.
  • Packeu, A., Hendrickx, M., Beguin, H., Martiny, D., Vandenberg, O. & Detandt, M. (2013). Identification of the Trichophyton mentagrophytes complex species using MALDI-TOF mass spectrometry. Medical Mycology, 51: 580–585.
  • Paulsen, B.S. & Myklestad, S. (1978). Structural studies of the reserve glucan produced by the marine diatom Skeletonema costatum (Grev.) Cleve. Carbohydrate Research, 62: 386–388.
  • Pavlovic, M., Mewes, A., Maggipinto, M., Schmidt, W., Messelhausser, U. & Balsliemke, J. (2014). MALDI-TOF-MS based identification of food-borne yeast isolates. Journal of Microbiological Methods, 106: 123–128.
  • Sandrin, T.R., Goldstein, J.E. & Schumaker, S. (2013). MALDI-TOF MS profiling of bacteria at the strain level: a review. Mass Spectrometry Review, 32: 188–217.
  • Shea, E.M. & Carpita, N.C. (1988). Separation of partially methylated alditol acetates on SP-2330 and HP-1 vitreous silica capillary columns. Journal of Chromatography, 445: 424–428.
  • Smith, V.H. & Crews, T. (2014). Applying ecological principles of crop cultivation in large-scale algal biomass production. Algal Research, 4: 23–34.
  • Stone, B. (2006). Callose and related glucans. Encyclopedia of Life Sciences. doi: 10.1038/npg.els.00041.
  • Storseth, T.R., Kirkvold, S., Skjermo, J. & Reitan, K. (2006). A branched β-d-(1→3, 1→6)-glucan from the marine diatom Chaetoceros debilis (Bacillariophyceae) characterized by NMR. Carbohydrate Research, 341: 2108–2114.
  • Sumper, M. & Lehmann, G. (2006). Silica pattern formation in diatoms: species-specific polyamine biosynthesis. ChemBioChem, 7: 1419–1427.
  • Sumper, M., Brunner, E. & Lehmann, G. (2005). Biomineralization in diatoms: characterization of novel polyamines associated with silica. FEBS Letters, 579: 3765–3769.
  • Sumper, M., Hett, R., Lehmann, G. & Wenzl, S. (2007). A code for lysine modifications of a silica biomineralizing silaffin protein. Angewandte Chemie, 46: 8405–8408.
  • Suzuki, T., Midonoya, H. & Shioi, Y. (2009). Analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Analytical Biochemistry, 390: 57–62.
  • Takahashi, E., Ledauphin, J., Goux, D. & Orvain, F. (2009). Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods. Marine and Freshwater Research, 60: 1201–1210.
  • Tesson, B. & Hildebrand, M. (2013). Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS ONE 8(4): e61675.
  • Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M. & Pondaven, P. (2017). Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience, 11: 27–37.
  • Vieler, A., Wilhelm, C., Goss, R., Süß, R. & Schiller, J. (2007). The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chemistry and Physics of Lipids, 150: 143–155.
  • Waterkeyn, L. & Bienfait, A. (1987). Localization and function of beta 1,3-glucans (callose and chrysolaminarin) in Pinnularia genus (Diatoms). Cellule, 74: 199–226.
  • Wilhelm, C., Büchel, C., Fisahn, J., Goss, R., Jakob, T., Laroche, J., Lavaud, J., Lohr, M., Riebesell, U., Stehfest, K., Valentin, K. & Kroth, P.G. (2006). The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist, 157: 91–124.
  • Xia, S., Gao, B., Li, A., Xiong, J., Ao, Z. & Zhang, C. (2014). Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Marine Drugs, 12: 4883–4897.
  • Young, R.J. & Lovell, P.A. (1991). Introduction to Polymers, 2nd edition. Cambridge University Press, Cambridge.
  • Zhang, H., Wang, D.Z., Xie, Z.X., Zhang, S.F., Wang, M.H. & Lin, L. (2015). Comparative proteomics reveals highly and differentially expressed proteins in field-collected and laboratory-cultured blooming cells of the diatom Skeletonema costatum. Environmental Microbiology, 17: 3976–3991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.