851
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Vanadium-dependent haloperoxidase activity and phlorotannin incorporation into the cell wall during early embryogenesis of Fucus vesiculosus (Phaeophyceae)

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 275-284 | Received 30 Aug 2019, Accepted 12 Dec 2019, Published online: 04 Mar 2020

References

  • Almeida, M.G., Humanes, M., Melo, R., Silva, J.A., Fraústo da Silva, J.J.R. & Wever, R. (2000). Purification and characterization of vanadium haloperoxidases from the brown alga Pelvetia canaliculata. Phytochemistry, 54: 5–11.
  • Apel, K. & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373–399.
  • Berglin, M., Delage, L., Potin, P., Vilter, H. & Elwing, H. (2004). Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromolecules, 5: 2376–2383.
  • Bienert, G.P., Schjoerring, J.K. & Jahn, T.P. (2006). Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta – Biomembranes, 1758: 994–1003.
  • Bischof, K. & Rautenberger R. (2012). Seaweed responses to environmental stress: reactive oxygen and antioxidative strategies. In Seaweed Biology (Wiencke, C. & Bischof, K., editors), 109–132. Springer-Verlag, Berlin.
  • Bisgrove, S.R., Henderson, D.C. & Kropf, D.L. (2003). Asymmetric division in fucoid zygotes is positioned by telophase nuclei. Plant Cell, 15: 854–862.
  • Bisgrove, S.R. & Kropf, D.L. (2001). Cell wall deposition during morphogenesis in fucoid algae. Planta, 212: 648–658.
  • Bitton, R., Ben-Yehuda, M., Davidovich, M., Balazs, Y., Potin, P., Delage, L., Colin, C. & Bianco-Peled, H. (2006). Structure of algal-born phenolic polymeric adhesives. Macromolecular Bioscience, 6: 737–746.
  • Bitton, R., Berglin, M., Elwing, H., Colin, C., Delage, L., Potin, P. & Bianco-Peled, H. (2007). The influence of halide-mediated oxidation on algae-born adhesives. Macromolecular Bioscience, 7: 1280–1289.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72: 248–254.
  • Brawley, S.H., Wetherbee, R. & Quatrano, R.S. (1976). Fine structural studies of the gametes and embryos of Fucus vesiculosus L. (Phaeophyta). II. The cytoplasm of the egg and the young zygote. Journal of Cell Science, 20: 255–271.
  • Butler, A. & Carter-Franklin, J.N. (2004). The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Natural Product Reports, 21: 180–188.
  • Cicco, N., Lanorte, M.T., Paraggio, M., Viggiano, M. & Lattanzio V. (2009). A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91: 107–110.
  • Coelho, S.M., Taylor, A.R., Ryan, K.P., Sousa-Pinto, I., Brown, M.T. & Brownlee C. (2002). Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. The Plant Cell, 14: 2369–2381.
  • Connan, S., Delisle, F., Deslandes, E. & Ar Gall, E. (2006). Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Botanica Marina, 49: 39–46.
  • Deniaud-Bouët, E., Kervarec, N., Michel, G., Tonon, T., Kloareg, B. & Hervé, C. (2014). Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Annals of Botany, 114: 1203–1216.
  • Eickhoff, H., Jung, G. & Rieker, A. (2001). Oxidative phenol coupling – tyrosine dimers and libraries containing tyrosyl peptide dimers. Tetrahedron, 57: 353–364.
  • Everett, R.R., Kanofsky, J.R. & Butler, A. (1990). Mechanistic investigations of the novel non-heme vanadium bromoperoxidases: evidence for singlet oxygen production. Journal of Biological Chemistry, 265: 4908–4914.
  • Fenical, W. (1975). Halogenation in the Rhodophyta: A review. Journal of Phycology, 11: 245–259.
  • Gay, C. & Gebicki, J.M. (2000). A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Analytical Biochemistry, 284: 217–220.
  • Gómez, I. & Huovinen, P. (2010). Induction of phlorotannins during UV exposure mitigates inhibition of photosynthesis and DNA damage in the kelp Lessonia nigrescens. Photochemistry and Photobiology, 86: 1056–1063.
  • Halat, L., Galway, M.E., Gitto, S. & Garbary, D.J. (2015). Epidermal shedding in Ascophyllum nodosum (Phaeophyceae): seasonality, productivity and relationship to harvesting. Phycologia, 54: 599–608.
  • Homblé, F. & Léonetti, M. (2007). Emergence of symmetry breaking in fucoid zygotes. Trends in Plant Science, 12: 253–259.
  • Hutschenreuther, A., Kiontke, A., Birkenmeier, G. & Birkemeyer, C. (2012). Comparison of extraction conditions and normalization approaches for cellular metabolomics of adherent growing cells with GCMS. Analytical Methods, 4: 1959–1963.
  • Iken, K., Amsler, C.D., Hubbard, J.M., McClintock, J.B. & Baker, B.J. (2007). Allocation patterns of phlorotannins in Antarctic brown algae. Phycologia, 46: 386–395.
  • Imbs, T.I. & Zvyagintseva, T.N. (2018). Phlorotannins are polyphenolic metabolites of brown algae. Russian Journal of Marine Biology, 44: 263–273.
  • Jaffe, L.F. & Neuscheler, W. (1969). On the mutual polarization of nearby pairs of fucaceous eggs. Developmental Biology, 19: 549–565.
  • Jormalainen, V., Koivikko, R., Eränen, J.K. & Loponen, J. (2008). Variation of phlorotannins among three populations of Fucus vesiculosus as revealed by HPLC and colorimetric quantification. Journal of Chemical Ecology, 34: 57–64.
  • Kim, K.Y., Jeong, H.J., Main, H.P. & Garbary, D.J. (2006). Fluorescence and photosynthetic competency in single eggs and embryos of Ascophyllum nodosum (Phaeophyceae). Phycologia, 45: 331–336.
  • Kirke, D.A., Rai, D.K., Smyth, T.J. & Stengel, D.B. (2019). An assessment of temporal variation in the low molecular weight phlorotannin profiles in four intertidal brown macroalgae. Algal Research, 41, 101550.
  • Koivikko, R., Loponen, J., Honkanen, T. & Jormalainen, V. (2005). Contents of cytoplasmic, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. Journal of Chemical Ecology, 31: 195–209.
  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., Dörmann, P., Weckwerth, W., Gibon, Y., Willmitzer, M.S.L., Fernie, A.R. & Steinhauser, D. (2005). [email protected]: the Golm Metabolome Database. Bioinformatics, 21: 1635–1638.
  • Kovàts, E. (1958). Characterization of organic compounds by gas chromatography. Part 1. Retention indices of aliphatic halides, alcohols, aldehydes and ketones. Helvetica Chimica Acta, 41: 1915–1932.
  • Kropf, D.L., Bisgrove, S.R. & Hable, W.E. (1999). Establishing a growth axis in fucoid algae. Trends in Plant Science, 4: 490–494.
  • Lamote, M., Darko, E., Schoefs, B. & Lemoine, Y. (2003). Assembly of the photosynthetic apparatus in embryos from Fucus serratus L. Photosynthesis Research, 77: 45–52.
  • Laturnus, F. (2001). Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environmental Science and Pollution Research, 8: 103–108.
  • Lemesheva, V. & Tarakhovskaya, E. (2018). Physiological functions of phlorotannins. Biological Communication, 63: 70–76.
  • Mabeau, S. & Kloareg, B. (1987). Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata. Journal of Experimental Botany, 38: 1573–1580.
  • McLachlan, J. & Bidwell, R.G.S. (1978). Photosynthesis of eggs, sperm, zygotes, and embryos of Fucus serratus. Canadian Journal of Botany, 56: 371–373.
  • Meslet-Cladière, L., Delage, L., Leroux, C. J., Goulitquer, S., Leblanc, C., Creis, E., Gall E. A., Stiger-Pouvreau, V., Czjzek, M. & Potin, P. (2013). Structure/function analysis of a type III polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis. Plant Cell, 25: 3089–3103.
  • Nitschke, U., Walsh, P., McDaid, J. & Stengel D. B. (2018). Variability in iodine in temperate seaweeds and iodine accumulation kinetics of Fucus vesiculosus and Laminaria digitata (Phaeophyceae, Ochrophyta). Journal of Phycology, 54: 114–125.
  • Passardi, F., Bakalovic, N., Teixeira, F.K., Margis-Pinheiro, M., Penel, C. & Dunand, C. (2007). Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics, 89: 567–579.
  • Petrov, V.D. & Van Breusegem, F. (2012). Hydrogen peroxide – a central hub for information flow in plant cells. AoB PLANTS, pls014.  doi:10.1093/aobpla/pls014
  • Potin, P. & Leblanc, C. (2006). Phenolic-based adhesives of marine brown algae. In Biological Adhesives (Smith, A.M. & Callow, J.A., editors), 105–124. Springer-Verlag, Berlin.
  • Prodanovic, R., Ostafe, R., Blanusa, M. & Schwaneberg, U. (2012). Vanadium bromoperoxidase-coupled fluorescent assay for flow cytometry sorting of glucose oxidase gene libraries in double emulsions. Analytical and Bioanalytical Chemistry, 404: 1439–1447.
  • Punitha, T., Phang, S.-M., Juan, J.C. & Beardall, J. (2018). Environmental control of vanadium haloperoxidases and halocarbon emissions in macroalgae. Marine Biotechnology, 20: 282–303.
  • Quatrano, R.S. (1974). Developmental biology: development in marine organisms. In Experimental Marine Biology ( Mariscal, R.N., editor), 303–346. Academic Press, New York.
  • Quatrano, R.S. & Stevens, P.T. (1976). Cell wall assembly in Fucus zygotes: 1. Characterization of the polysaccharide components. Plant Physiology, 58: 224–231.
  • Ragan, M.A. & Glombitza, K.W. (1986). Phlorotannins, brown algal polyphenols. Progress in Phycological Research, 4: 129–241.
  • Ragan, M.A. & Jensen, A. (1979). Quantitative studies on brown algal phenols. III. Light-mediated exudation on polyphenols from Ascophyllum nodosum (L.) Le Jol. Journal of Experimental Marine Biology and Ecology, 36: 91–101.
  • Salgado, L.T., Cinelli, L.P., Viana, N.B., de Carvalho, R.T., De Souza Mourão, P.A., Teixeira, V.L., Farina, M. & Filho, G.M.A. (2009). A vanadium bromoperoxidase catalyzes the formation of high‐molecular‐weight complexes between brown algal phenolic substances and alginates. Journal of Phycology, 45: 193–202.
  • Schoenwaelder, M.E.A. (2002). The occurrence and cellular significance of physodes in brown algae. Phycologia, 41: 125–139.
  • Schoenwaelder, M.E.A. & Clayton, M.N. (1998). Secretion of phenolic substances into the zygote wall and cell plate in embryos of Hormosira and Acrocarpia (Fucales, Phaeophyceae). Journal of Phycology, 34: 969–980.
  • Schoenwaelder, M.E.A. & Wiencke, C. (2000). Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biology, 2: 24–33.
  • Sheffield, D.J., Harry, T.R., Smith, A.J. & Rogers, L.J. (1994). Immobilization of bromoperoxidase from Corallina officinalis. Biotechnology Techniques, 8: 579–582.
  • Stein, S.E. (1999). An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry, 10: 770–781.
  • Swanson, A.K. & Druehl, L.D. (2002). Induction, exudation and the UV protective role of kelp phlorotannins. Aquatic Botany, 73: 241–253.
  • Tarakhovskaya, E., Lemesheva, V., Bilova, T. & Birkemeyer, C. (2017). Early embryogenesis of brown alga Fucus vesiculosus L. is characterized by significant changes in carbon and energy metabolism. Molecules, 22(9): 1509.
  • Tarakhovskaya, E.R. (2014). Mechanisms of bioadhesion of macrophytic algae. Russian Journal of Plant Physiology, 61: 23–30.
  • Tarakhovskaya, E.R., Bilova, T.E. & Maslov, Y.I. (2015). Hydrogen peroxide content and vanadium-dependent haloperoxidase activity in thalli of six species of Fucales (Phaeophyceae). Phycologia, 54: 417–424.
  • Tarakhovskaya, E.R., Kang, E.J., Kim, K.Y. & Garbary, D.J. (2013). Influence of phytohormones on morphology and chlorophyll a fluorescence parameters in embryos of Fucus vesiculosus L. (Phaeophyceae). Russian Journal of Plant Physiology, 60: 176–183.
  • Tarakhovskaya, E.R. & Maslov, Y.I. (2005). Description of the photosynthetic apparatus of Fucus vesiculosus L. in early embryogenesis. Biology Bulletin, 32: 456–460.
  • Torode, T.A., Siméon, A., Marcus, S.E., Jam, M., Le Moigne, M.-A., Duffieux, D., Knox, J. P. & Hervé, C. (2016). Dynamics of cell wall assembly during early embryogenesis in the brown alga Fucus. Journal of Experimental Botany, 67: 6089–6100.
  • Verhaeghe, E., Buisson, D., Zekri, E., Leblanc, C., Potin, P. & Ambroise, Y. (2008a). A colorimetric assay for steady-state analyses of iodo- and bromoperoxidase activities. Analytical Biochemistry, 379: 60–65.
  • Verhaeghe, E.F., Fraysse, A., Guerquin-Kern, J.L., Wu, T.D., Devès, G., Mioskowski, C., Leblanc, C., Ortega, R., Ambroise, Y. & Potin, P. (2008b). Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. Journal of Biological Inorganic Chemistry, 13: 257–269.
  • Vilter, H. (1994). Extraction of proteins from sources containing tannins and anionic mucilages. Methods in Enzymology, 228: 665–672.
  • Wever, R. (2012). Structure and function of vanadium haloperoxidases. In Vanadium: Biochemical and Molecular Biological Approaches (Michibata, H., editor), 995–125. Springer, Dordrecht.
  • Wever, R., Plat, H. & de Boer, E. (1985). Isolation procedure and some properties of the bromoperoxidase from the seaweed Ascophyllum nodosum. Biochimica et Biophysica Acta, 830: 181–186.
  • Wever, R. & van der Horst, M.A. (2013). The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment. Dalton Transactions, 42: 11778–11786.
  • Wolff, S.P. (1994). Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods in Enzymology, 233: 182–189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.