666
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Tetraselmis suecica F&M-M33 phycosphere: associated bacteria and exo-metabolome characterization

, , , , , , & show all
Pages 61-71 | Received 06 Jun 2019, Accepted 18 Apr 2020, Published online: 17 Jun 2020

References

  • Amin, S.A., Green, D.H., Kupper, F.C. & Carrano, C.J. (2009a). Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorganic Chemistry, 48: 11451–11458.
  • Amin, S.A., Green, D.H., Hart, M.C., Kupper, F.C., Sunda, W.G. & Carrano, C.J. (2009b). Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proceedings of the National Academy of Sciences USA, 106: 17071–17076.
  • Apone, F., Barbulova, A., & Colucci, M.G. (2019). Plant and microalgae derived peptides are advantageously employed as bioactive compounds in cosmetics. Frontiers in Plant Science, 10: 756.
  • Bell, W. & Mitchell, R. (1972). Chemotactic and growth response of marine bacteria to algal extracellular products. The Biological Bulletin, 143: 265–277.
  • Biondi, N., Cheloni, G., Rodolfi, L., Viti, C., Giovannetti, L. & Tredici, M. R. (2018). Tetraselmis suecica F&M-M33 growth is influenced by its associated bacteria. Microbial Biotechnology, 11: 211–223.
  • Biondi, N., Cheloni, G., Tatti, E., Decorosi, F., Rodolfi, L., Giovannetti, L., Viti, C. & Tredici, M.R. (2017). The bacterial community associated with Tetraselmis suecica outdoor mass cultures. Journal of Applied Phycology, 29: 67–78.
  • Borowitzka, M.A. (2013). High-value products from microalgae – their development and commercialisation. Journal of Applied Phycology, 25: 743–756.
  • Bric, J.M., Bostock, R.M. & Silverstone, S.E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57: 535–538.
  • Chen, J.C., Chiu, M.H., Nie, R.L., Cordell, G.A. & Qiu, S.X. (2005). Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural Product Reports, 22: 386–399.
  • De-Bashan, L.E., Antoun, H. & Bashan, Y. (2008). Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44: 938–947.
  • De-Bashan, L.E., Bashan, Y., Moreno, M., Lebsky, V.K. & Bustillos, J.J. (2002). Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology, 48: 514–521.
  • Di Dato, V., Orefice, I., Amato, A., Fontanarosa, C., Amoresano, A., Cutignano, A., Ianora, A. & Romano, G. (2017). Animal-like prostaglandins in marine microalgae. The ISME Journal, 11: 1722–1726.
  • Do Nascimento, M., Dublan, M.L.A., Ortiz-Marquez, J.C.F. & Curatti, L. (2013). High lipid productivity of an Ankistrodesmus–Rhizobium artificial consortium. Bioresource Technology, 146: 400–407.
  • Fouilland, E. (2012). Biodiversity as a tool for waste phycoremediation and biomass production. Reviews in Environmental Science and Bio/Technology, 11: 1–4.
  • Fuentes, J.L., Garbayo, I., Cuaresma, M., Montero, Z., Gonzalez-Del-Valle, M. & Vilchez, C. (2016). Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14: 5. doi:10.3390/Md14050100.
  • Fukami, K., Nishijima, T. & Ishida, Y. (1997). Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 358: 185–191.
  • Green, D.H., Llewellyn, L.E., Negri, A.P., Blackburn, S.I. & Bolch, C.J.S. (2004). Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiology Ecology, 47: 345–357.
  • Guccione, A., Biondi, N., Sampietro, G., Rodolfi, L., Bassi, N. & Tredici, M.R. (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnology Biofuels, 7: 84. doi: 10.1186/1754-6834-7-84.
  • Guillard, R.R. & Ryther, J.H. (1962). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8: 229–239.
  • Guzmán, F., Wong, G., Román, T., Cárdenas, C., Alvárez, C., Schmitt, P., Albericio, F., & Rojas, V. (2019). Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) Butcher and bactericidal activity improvement. Marine Drugs, 17: 453.
  • Huang, A.C. & Osbourn, A. (2019). Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection. Pest Management Science. doi: 10.1002/ps.5410.
  • Hussain, R.A., Owegby, A.G., Parimoo, P. & Waterman, P.G. (1982). Kolanone, a novel polyisoprenylated benzophenone with antimicrobial properties from the fruit of Garcinia kola. Planta Medica, 44: 78–81.
  • Krohn-Molt, I., Alawi, M., Forstner, K.U., Wiegandt, A., Burkhardt, L., Indenbirken, D., Thiess, M., Grundhoff, A., Kehr, J. & Streit, W.R. (2017). Insights into microalga and bacteria interactions of selected phycosphere biofilms using metagenomic, transcriptomic, and proteomic approaches. Frontiers in Microbiology, 8: 1941. doi: 10.3389/Fmicb.2017.01941.
  • Kubo, I., Matsumoto, T., Kakooko, A.B. & Mubiru, N.K. (1983). Structure of mukaadial, a molluscicide from the Warburgia plants. Chemistry Letters, 7: 979–980.
  • Labeeuw, L., Khey, J., Bramucci, A.R., Atwal, H., De La Mata, A.P., Harynuk, J. & Case, R.J. (2016). Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells. Frontiers in Microbiology, 7: 828. doi: 10.3389/fmicb.2016.00828.
  • Lian, J., Wijffels, R.H., Smidt, H. & Sipkema, D. (2018). The effect of the algal microbiome on industrial production of microalgae. Microbial Biotechnology, 11: 806–818.
  • Lupette, J., Lami, R., Krasovec, M., Grimsley, N., Moreau, H., Piganeau, G. & Sanchez-Ferandin, S. (2016). Marinobacter dominates the bacterial community of the Ostreococcus tauri phycosphere in culture. Frontiers in Microbiology, 7: 1414. doi: 10.3389/Fmich.2010.01414
  • Madubunyi, I.I. (1995). Antimicrobial activities of the constituents of Garcinia kola seeds. International Journal of Pharmacognosy, 33: 232–237.
  • Meza, B., De-Bashan, L.E., Hernandez, J.P. & Bashan, Y. (2015). Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Research in Microbiology, 166: 399–407.
  • Moejes, W.F., Succurro, A., Popa, O., Maguire, J. & Ebenhöh, O. (2017). Dynamics of the bacterial community associated with Phaeodactylum tricornutum cultures. Processes, 5. doi: 10.3390/pr5040077.
  • Molina Grima, E., Belarbi, E.H., Acién-Fernández, F.G., Medina, A.R. & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advance, 20: 491–515.
  • Möller, N.P., Scholz-Ahrens, K.E., Roos, N., & Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition, 47: 171–182.
  • Naito, K., Imai, I. & Nakahara, H. (2008). Complexation of iron by microbial siderophores and effects of iron chelates on the growth of marine microalgae causing red tides. Phycological Research, 56: 58–67.
  • Park, J., Jin, H.F., Lim, B.R., Park, K.Y. & Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology, 101: 8649–8657.
  • Park, J., Park, B.S., Wang, P., Patidar, S.K., Kim, J.H., Kim, S.-H., et al. (2017). Phycospheric native bacteria Pelagibaca bermudensis and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in co-cultivation system through mutualistic interaction. Frontiers in Plant Science, 8. doi: 10.3389/fpls.2017.00289.
  • Patidar, S.K., Kim, S.H., Kim, J.H., Park, J., Park, B.S. & Han, M.S. (2018). Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivity. Biotechnoogy Biofuels, 11. doi: 10.1186/S13068-018-1097-9.
  • Perez-Miranda, S., Cabirol, N., George-Tellez, R., Zamudio-Rivera, L.S. & Fernandez, F.J. (2007). O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods, 70: 127–131.
  • Piampiano, E., Pini, F., Biondi, N., Pastorelli, R., Giovannetti, L. & Viti, C. (2019). Analysis of microbiota in cultures of the green microalga Tetraselmis suecica. European Journal of Phycology, 54: 497–508.
  • R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  • Ramanan, R., Kim, B.H., Cho, D.H., Oh, H.M. & Kim, H.S. (2016). Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnology Advance, 34: 14–29.
  • Reddy, D.S. (2004). A general approach toward bakkanes: short synthesis of (±)-bakkenolide-A (fukinanolide). Organic Letters, 6: 3345–3347.
  • Sansone, C., Galasso, C., Orefice, I., Nuzzo, G., Luongo, E., Cutignano, A., Romano, G., Brunet, C., Fontana, A., Esposito, F. & Ianora, A. (2017). The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Scientific Report, 7: 41215–41215.
  • Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101: 87–96.
  • Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K. & Naidu, R. (2011). Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnology Advance, 29: 896–907.
  • Tandon, P., Jin, Q. & Huang, L.M. (2017). A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microbial Cell Factories, 16. doi: 10.1186/S12934-017-0834-2.
  • Tredici, M.R., Biondi, N., Ponis, E., Rodolfi, L. & Chini Zittelli, G. (2009). Advances in microalgal culture for aquaculture feed and other uses. In New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management (Burnell, G. & Allan, G., editors), 610–686. Woodhead Publishing, Cambridge.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.