508
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Impact of UV radiation on the red seaweed Gelidium lingulatum and its associated bacteria

ORCID Icon, , , &
Pages 129-141 | Received 13 Sep 2019, Accepted 23 May 2020, Published online: 07 Jul 2020

References

  • Agogué, H., Joux, F., Obernosterer, I. & Lebaron, P. (2005). Resistance of marine bacterioneuston to solar radiation. Applied and Environmental Microbiology, 71: 5282–5289.
  • Aires, T., Moalic, Y., Serrao, E.A. & Arnaud-Haond, S. (2015). Hologenome theory supported by cooccurrence networks of species-specific bacterial communities in siphonous algae (Caulerpa). FEMS Microbiology Ecology, 91: fiv067.
  • Bischof, K., Hanelt, D. & Wiencke, C. (2000). Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta, 211: 555–562.
  • Brodie, J., Williamson, C., Barker, G.L., Walker, R.H., Briscoe, A. & Yallop, M. (2016). Characterising the microbiome of Corallina officinalis, a dominant calcified intertidal red alga. FEMS Microbiology Ecology, 92: fiw110.
  • Burke, C., Thomas, T., Lewis, M., Steinberg, P. & Kjelleberg, S. (2011). Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME Journal, 5: 590–600.
  • Buschmann, A.H., Correa, J.A., Westermeier, R., Hernández-González, M. del C. & Norambuena, R. (2001). Red algal farming in Chile: a review. Aquaculture, 194: 203–220.
  • Campbell, A.H., Marzinelli, E.M., Gelber, J. & Steinberg, P.D. (2015). Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Frontiers in Microbiology, 6: 230.
  • Chen, M.Y. & Parfrey, L.W. (2018). Incubation with macroalgae induces large shifts in water column microbiota, but minor changes to the epibiota of co-occurring macroalgae. Molecular Ecology, 27: 1966–1979.
  • Clarke, A. (2003). Costs and consequences of evolutionary temperature adaptation. Trends in Ecology and Evolution, 18: 573–581.
  • de Mesquita, M.M.F., Crapez, M.A.C., Teixeira, V.L. & Cavalcanti, D.N. (2019). Potential interactions bacteria-brown algae. Journal of Applied Phycology, 31: 867–883.
  • de Oliveira, L.S., Gregoracci, G.B., Silva, G.G.Z., Salgado, L.T., Filho, G.A., Alves-Ferreira, M., Pereira, R.C. & Thompson, F.L. (2012). Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics, 13: 487.
  • Dobretsov, S., Dahms, H.-U., Harder, T. & Qian, P.-Y. (2006). Allelochemical defense against epibiosis in the macroalga Caulerpa racemosa var. turbinata. Marine Ecology Progress Series, 318: 165–175.
  • Dobretsov, S.V. & Qian, P.-Y. (2002). Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18: 217–228.
  • Dowd, S.E., Wolcott, R.D., Sun, Y., McKeehan, T., Smith, E. & Rhoads, D. (2008). Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS ONE, 3: e3326.
  • Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S. & Thomas, T. (2013). The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiology Review, 37: 462–476.
  • Egan, S., Thomas, T. & Kjelleberg, S. (2008). Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Current Opinion of Microbiology, 11: 219–225.
  • Enríquez, S. & Borowitzka, M. (2010). The use of the fluorescence signal in studies of sea grasses and macroalgae. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications ( Suggett, D.J., Borowitzka, M.A. & Prášil, O., editors), 187–208. Springer, Dordrecht.
  • Falkowski, P.G. & LaRoche, J. (1991). Acclimation to spectral irradiance in algae. Journal of Phycology, 27: 8–14.
  • Florez, J.Z., Camus, C., Hengst, M.B. & Buschmann, A.H. (2017). A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Frontiers in Microbiology, 8: 2561.
  • Florez, J.Z., Camus, C., Hengst, M.B., Marchant, F. & Buschmann, A.H. (2019). Structure of the epiphytic bacterial communities of Macrocystis pyrifera in localities with contrasting nitrogen concentrations and temperature. Algal Research, 44: 101706.
  • Goecke, F., Labes, A., Wiese, J. & Imhoff, J.F. (2013). Phylogenetic analysis and antibiotic activity of bacteria isolated from the surface of two co-occurring macroalgae from the Baltic Sea. European Journal of Phycology, 48: 47–60.
  • Goosen, N. & Moolenaar, G.F. (2008). Repair of UV damage in bacteria. DNA Repair, 7: 353–379.
  • Harder, T. (2009). Marine epibiosis: concepts, ecological consequences and host defence. In Marine and Industrial Biofouling (Flemming, H.-C., Murthy, P.S., Venkatesan, R. & Cooksey, K., editors), 219–231. Springer, Dordrecht.
  • Hengst, M.B., Andrade, S., González, B. & Correa, J.A. (2010). Changes in epiphytic bacterial communities of intertidal seaweeds modulated by host, temporality, and copper enrichment. Microbial Ecology, 60: 282–290.
  • Hepburn, C.D. & Hurd, C.L. (2005). Conditional mutualism between the giant kelp Macrocystis pyrifera and colonial epifauna. Marine Ecology Progress Series, 302: 37–48.
  • Hernández, K., Yannicelli, B., Montecinos, A., Ramos, M., González, H.E. & Daneri, G. (2012). Temporal variability of incidental solar radiation and modulating factors in a coastal upwelling area (36°S). Progress in Oceanography, 92–95: 18–32.
  • Hollants, J., Leliaert, F., De Clerck, O. & Willems, A. (2013). What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbial Ecology, 83: 1–16.
  • Hudson, J., Kumar, V. & Egan, S. (2019). Comparative genome analysis provides novel insight into the interaction of Aquimarina sp. AD1, BL5 and AD10 with their macroalgal host. Marine Genomics, 46: 8–15.
  • Hünken, M., Harder, J. & Kirst, G.O. (2008). Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biology, 10: 519–526.
  • Huovinen, P., Gómez, I., Figueroa, F.L., Ulloa, N., Morales, V. & Lovengreen, C. (2005). Ultraviolet-absorbing mycosporine-like amino acids in red macroalgae from Chile. Botanica Marina, 47: 21–29.
  • Hurd, C.L., Harrison, P.J., Bischof, K. & Lobban, C.S. (2014). Seaweed Ecology and Physiology. 2nd ed. Cambridge University Press, Cambridge.
  • Jung, Y.T., Lee, J.S. & Yoon, J.H. (2016). Lewinella aquimaris sp. nov., isolated from seawater. International Journal of Systematic and Evolutionary Microbiology, 16: 3989–3994. doi:10.1099/ijsem.0.001299
  • Kang, H., Kim, H., Joung, Y. & Joh, K. (2017). Lewinella maritima sp. nov., and Lewinella lacunae sp. nov., novel bacteria from marine environments. International Journal of Systematic and Evolutionary Microbiology, 67: 3603–3609. doi:10.1099/ijsem.0.002176
  • Lachnit, T., Meske, D., Wahl, M., Harder, T. & Schmitz, R. (2011). Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environmental Microbiology, 13: 655–665.
  • Lemay, M.A., Martone, P.T., Hind, K.R., Lindstrom, S.C. & Parfrey, L.W. (2018). Alternate life history phases of a common seaweed have distinct microbial surface communities. Molecular Ecology, 27: 3555–3568.
  • Longford, S.R., Campbell, A.H., Nielsen, S., Case, R.J., Kjelleberg, S. & Steinberg, P.D. (2019). Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont. Scientific Reports, 9: 1363.
  • Longford, S.R., Tujula, N.A., Crocetti, G.R., Holmes, A.J., Holmström, C., Kjelleberg, S., Steinberg, P.D. & Taylor, M.W. (2007). Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquatic Microbial Ecology, 48: 217–229.
  • Loos, van der, L.M., Eriksson, B.K. & Falcão Salles, J. (2019). The macroalgal holobiont in a changing sea. Trends in Microbiology, 27: 635–650.
  • López, B.A., Tellier, F., Retamal-Alarcón, J.C., Pérez-Araneda, K., Fierro, A.O., Macaya, E.C., Tala, F. & Thiel, M. (2017). Phylogeography of two intertidal seaweeds, Gelidium lingulatum and G. rex (Rhodophyta: Gelidiales), along the South East Pacific: patterns explained by rafting dispersal? Marine Biology, 164: 188.
  • Macaya, E.C., López, B., Tala, F., Tellier, F. & Thiel, M. (2016). Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In Seaweed Phylogeography: Adaptation and Evolution of Seaweeds under Environmental Change (Hu, Z.-M. & Fraser, C., editors), 97–130. Springer, Dordrecht.
  • Mancuso, F.P., D’Hondt, S., Willems, A., Airoldi, L. & De Clerck, O. (2016). Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Frontiers in Microbiology, 7: 476.
  • Manrique, J.M., Calvo, A.Y., Halac, S.R., Villafañe, V.E., Jones, L.R. & Helbling, H.E. (2012). Effects of UV radiation on the taxonomic composition of natural bacterioplankton communities from Bahía Engaño (Patagonia, Argentina). Journal of Photochemistry and Photobiology B, 117: 171–178.
  • Martin, M., Barbeyron, T., Martin, R., Portetelle, D., Michel, G. & Vandenbol, M. (2015). The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Frontiers in Microbiology, 6: 1487.
  • Matsuo, Y., Imagawa, H., Nishizawa, M. & Shizuri, Y. (2005). Isolation of an algal morphogenesis inducer from a marine bacterium. Science, 307: 1598.
  • Michelou, V.K., Caporaso, J.G., Knight, R. & Palumbi, S.R. (2013). The ecology of microbial communities associated with Macrocystis pyrifera. PLoS ONE, 8: e67480.
  • Miranda, L.N., Hutchison, K., Grossman, A.R. & Brawley, S.H. (2013). Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae? PLoS ONE, 8: e58269.
  • Montalva, S. & Santelices, B. (1981). Interspecific interference among species of Gelidium from Central Chile. Journal of Experimental Marine Biology and Ecology, 53: 77–88.
  • Paix, B., Carriot, N., Barry-Martinet, R., Greff, S., Misson, B., Briand, J.-F. & Culioli, G. (2020). A multi-omics analysis suggests links between the differentiated surface metabolome and epiphytic microbiota along the thallus of a Mediterranean seaweed holobiont. Frontiers in Microbiology, 11: 494.
  • Paix, B., Othmani, A., Debroas, D., Culioli, G. & Briand, J.-F. (2019). Temporal covariation of epibacterial community and surface metabolome in the Mediterranean seaweed holobiont Taonia atomaria. Environmental Microbiology. https://doi.org/10.1111/1462-2920.14617.
  • Paul, N.A., Nys, R. de & Steinberg, P.D. (2006). Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Marine Ecology Progress Series, 306: 87–101.
  • Raddatz, S., Guy‐Haim, T., Rilov, G. & Wahl, M. (2017). Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae). Journal of Phycology, 53: 44–58.
  • Ramírez, M. & Santelices, B. (1991). Catálogo de las algas marinas bentónicas de la costa temperada del Pacífico de Sudamérica. Ediciones Universidad Católica de Chile, Santiago de Chile.
  • Ramos-Rodríguez, A., Lluch-Cota, D.B., Lluch-Cota, S.E. & Trasviña-Castro, A. (2012). Sea surface temperature anomalies, seasonal cycle and trend regimes in the Eastern Pacific coast. Ocean Science, 8: 81–90.
  • Saha, M., Ferguson, R.M.W., Dove, S., Künzel, S., Meichssner, R., Neulinger, S.C., Petersen, F.O. & Weinberger F. (2020). Salinity and time can alter epibacterial communities of an invasive seaweed. Frontiers in Microbiology, 10: 2870. doi: 10.3389/fmicb.2019.02870.
  • Saha, M. & Weinberger, F. (2019). Microbial “gardening” by a seaweed holobiont: surface metabolites attract protective and deter pathogenic epibacterial settlement. Journal of Ecology. https://doi.org/10.1111/1365-2745.13193.
  • Santelices, B. & Varela, D. (1994). Abiotic control of reattachment in Gelidium chilense (Montagne) Santelices & Montalva (Gelidiales; Rhodophyta). Journal of Experimental Marine Biology and Ecology, 177: 145–155.
  • Santos, A.L., Lopes, S., Baptista, I., Henriques, I., Gomes, N.C.M., Almeida, A., Correia, A. & Cunha, A. (2011). Diversity in UV sensitivity and recovery potential among bacterioneuston and bacterioplankton isolates. Letters in Applied Microbiology, 52: 360–366.
  • Santos, A.L., Oliveira, V., Baptista, I., Henriques, I., Gomes, N.C., Almeida, A., Correia, A. & Cunha, A. (2012). Effects of UV-B radiation on the structural and physiological diversity of bacterioneuston and bacterioplankton. Applied and Environmental Microbiology, 78: 2066–2069.
  • Selvarajan, R., Sibanda, T., Venkatachalam, S., Ogola, H.J.O., Obieze, C.C. & Msagati, T.A. (2019). Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Scientific Reports, 9: 19835.
  • Singh, R.P., Mantri, V.A., Reddy, C.R.K. & Jha, B. (2011). Isolation of seaweed-associated bacteria and their morphogenesis-inducing capability in axenic cultures of the green alga Ulva fasciata. Aquatic Biology, 12: 13–21.
  • Singh, R.P. & Reddy, C.R.K. (2014). Seaweed–microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88: 213–230.
  • Staufenberger, T., Thiel, V., Wiese, J. & Imhoff, J.F. (2008). Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiology Ecology, 64: 65–77.
  • Stratil, S.B., Neulinger, S.C., Knecht, H., Friedrichs, A.K. & Wahl, M. (2013). Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus. Microbiology Open, 2: 338–349.
  • Tapia, F.J., Largier, J.L., Castillo, M., Wieters, E.A. & Navarrete, S.A. (2014). Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE, 9: e110841.
  • Tujula, N.A., Crocetti, G.R., Burke, C., Thomas, T., Holmström, C. & Kjelleberg, S. (2010). Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME Journal, 4: 301–311.
  • Véliz, K., Chandía, N., Bischof, K. & Thiel, M. (2020). Geographic variation of UV stress tolerance in red seaweeds does not scale with latitude along the SE Pacific coast. Journal of Phycology. https://doi.org/10.1111/jpy.13009.
  • Véliz, K., Chandía, N., Karsten, U., Lara, C. & Thiel, M. (2019). Geographic variation in biochemical and physiological traits of the red seaweeds Chondracanthus chamissoi and Gelidium lingulatum from the south east Pacific coast. Journal of Applied Phycology, 31: 665–682.
  • Véliz, K., Edding, M., Tala, F. & Gómez, I. (2006). Effects of ultraviolet radiation on different life cycle stages of the south Pacific kelps, Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae). Marine Biology, 149: 1015–1024.
  • Vernet, M., Diaz, S.B., Fuenzalida, H.A., Camilion, C., Booth, C.R., Cabrera, S., Casiccia, C., Deferrari, G., Lovengreen, C., Paladini, A., Pedroni, J., Rosales, A. & Zagarese, H.E. (2009). Quality of UVR exposure for different biological systems along a latitudinal gradient. Photochememical & Photobiological Sciences, 8: 1329–1345.
  • Wahl, M. (1989). Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine Ecology Progress Series, 58: 175–189.
  • Wahl, M., Goecke, F., Labes, A., Dobretsov, S. & Weinberger, F. (2012). The second skin: ecological role of epibiotic biofilms on marine organisms. Frontiers in Microbiology, 3: 292.
  • Wahl, M., Shahnaz, L., Dobretsov, S., Saha, M., Symanowski, F., David, K., Lachnit, T., Vasel, M. & Weinberger, F. (2010). Ecology of antifouling resistance in the bladder wrack Fucus vesiculosus: patterns of microfouling and antimicrobial protection. Marine Ecology Progress Series, 411: 33–48.
  • Weigel, B.L. & Pfister, C.A. (2019). Successional dynamics and seascape-level patterns of microbial communities on the canopy-forming kelps Nereocystis luetkeana and Macrocystis pyrifera. Frontiers in Microbiology, 10: 346.
  • Wichard, T. (2015). Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Frontiers in Plant Science, 6: 86.
  • Wiencke, C., Lüder, U.H. & Roleda, M.Y. (2007). Impact of ultraviolet radiation on physiology and development of zoospores of the brown alga Alaria esculenta from Spitsbergen. Physiologia Plantarum, 130: 601–612.
  • Wiese, J., Thiel, V., Nagel, K., Staufenberger, T. & Imhoff, J.F. (2009). Diversity of antibiotic active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Marine Biotechnology, 11: 287–300.
  • Wieters, E.A., Medrano, A. & Quiroga, G. (2013). Spatial variation in photosynthetic recovery of intertidal turf algae from acute UVB and temperature stress associated with low tides along the central coast of Chile. Journal of Experimental Marine Biology and Ecology, 449: 340–348.
  • Yokoya, N.S. & Handro, W. (2002). Effects of plant growth regulators and culture medium on morphogenesis of Solieria filiformis (Rhodophyta) cultured in vitro. Journal of Applied Phycology, 14: 97–102.
  • Zar, J.H. (2010). Biostatistical Analysis. 5th ed. Prentice Hall, Pearson.
  • Zhang, Z., Li, S., Li, J., Gu, X. & Lin, X. (2019). Complete genome sequences of a H2O2-resistant psychrophilic bacterium Colwellia sp. Arc7-D isolated from Arctic Ocean sediment. Marine Genomics, 43: 65–67.
  • Zhao, Z., Pan, Y., Jiang, J., Gao, S., Sun, H., Dong, Y., Sun, P., Guan, X. & Zhou, Z. (2018). Unrevealing variation of microbial communities and correlation with environmental variables in a full culture-cycle of Undaria pinnatifida. Marine Environmental Research, 139: 46–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.