320
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Comparative genoprotection ability of wild-harvested vs. aqua-cultured Ulva rigida coupled with phytochemical profiling

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 105-118 | Received 10 Oct 2019, Accepted 22 May 2020, Published online: 20 Jul 2020

References

  • Abreu, M.H., Varela, D.A., Henríquez, L., Villarroel, A., Yarish, C., Sousa-Pinto, I. & Buschmann, A.H. (2009). Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture, 293: 211–220.
  • Abreu, M.H., Pereira, R., Yarish, C., Buschmann, A. & Sousa-Pinto, I. (2011). IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture, 312: 77–87.
  • Alam, S.S., El-Kader, H.A.M.A., El-Rahim, A.H.A., Hamed, S.M. & Saber, A.A. (2016). The protective role of Ulva lactuca against genotoxic and biochemical effects induced by γ-irradiation in rats. International Journal of Pharmaceutical Sciences Review and Research, 37: 40–48.
  • Alves, A.B.C.R., Santos, R.S. dos, Calil, S. de S., Niero, R., Lopes, J. da S., Perazzo, F.F., Rosa, P.C.P., Andrade, S.F., Cechinel-Filho, V. & Maistro, E.L. (2014). Genotoxic assessment of Rubus imperialis (Rosaceae) extract in vivo and its potential chemoprevention against cyclophosphamide-induced DNA damage. Journal of Ethnopharmacology, 153: 694–700.
  • AOCS (2019). AOCS Lipid Chemistry, Biology, Technology & Analysis. http://lipidlibrary.aocs.org (accessed 3.11.19).
  • Astorg, P. (1997). Food carotenoids and cancer prevention: an overview of current research. Trends in Food Science and Technology, 8: 406–413.
  • Athukorala, Y., Kim, K.-N. & Jeon, Y.-J. (2006). Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food and Chemical Toxicology, 44: 1065–1074.
  • Azqueta, A. & Collins, A.R. (2016). Polyphenols and DNA damage: a mixed blessing. Nutrients, 8: 1–21.
  • Azqueta, A., Shaposhnikov, S. & Collins, A.R. (2009). DNA oxidation: investigating its key role in environmental mutagenesis with the comet assay. Mutation Research, 674: 101–108.
  • Bertoncini, C.R. & Meneghini, R. (1995). DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3’-phosphoglycolate termini. Nucleic Acids Research, 23: 2995–3002.
  • Bolzán, A.D. & Bianchi, M.S. (2001). Genotoxicity of streptonigrin: a review. Mutation Research, 488: 25–37.
  • Campos-Pereira, F.D., Veiga‐Menoncello, A.C.P. & Marin-Morales, M.A. (2014). DNA damage induced by diet. InToxic Effects of Chemicals in Food, Chemical and Consumer Product Safety (Severi-Aguiar, G.D.C. & Alves, A.A., editors), 43–59. Research Signpost.
  • Canter-Lund, H. & Lund, J. (1995). Freshwater Algae: Their Microscopic World Explored. Biopress.
  • Carmona, E.R., Creus, A. & Marcos, R. (2011). Genotoxicity testing of two lead-compounds in somatic cells of Drosophila melanogaster. Mutation Research, 724: 35–40.
  • Carocho, M. & Ferreira, I.C.F.R. (2013). A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51: 15–25.
  • Celikler, S., Yildiz, G., Vatan, O. & Bilaloglu, R. (2008). In vitro antigenotoxicity of Ulva rigida C. Agardh (Chlorophyceae) extract against induction of chromosome aberration, sister chromatid exchange and micronuclei by mutagenic agent MMC. Biomedical and Environmental Sciences, 21: 492–498.
  • Celikler, S., Tas, S., Vatan, O., Ziyanok-Ayvalik, S., Yildiz, G. & Bilaloglu, R. (2009). Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food and Chemical Toxicology, 47: 1837–1840.
  • Celikler, S., Tas, S., Ziyanok-Ayvalik, S., Vatan, O., Yildiz, G. & Ozel, M. (2014). Protective and antigenotoxic effect of Ulva rigida C. Agardh in experimental hypothyroid. Acta Biologica Hungarica, 65: 13–26.
  • Chakraborty, K. & Paulraj, R. (2010). Sesquiterpenoids with free-radical-scavenging properties from marine macroalga Ulva fasciata Delile. Food Chemistry, 122: 31–41.
  • Ciccia, A. & Elledge, S.J. (2010). The DNA damage response: making it safe to play with knives. Molecular Cell, 40: 179–204. doi:10.1016/j.molcel.2010.09.019.
  • Collins, A.R. (2004). The comet assay for DNA damage and repair: principles, applications, and limitations. Molecular Biotechnology, 26: 249–261.
  • de Roos, B. & Duthie, G.G. (2015). Role of dietary pro-oxidants in the maintenance of health and resilience to oxidative stress. Molecular Nutrition and Food Research, 59: 1229–1248.
  • DFG (2000). Carcinogenic and Anticarcinogenic Factors in Food. Senate Commission on Food Safety. Wiley‐VCH Verlag GmbH. doi: 10.1002/3527606246.
  • El-Agamey, A., Lowe, G.M., McGarvey, D.J., Mortensen, A., Phillip, D.M., Truscott, T.G. & Young, A.J. (2004). Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Archives of Biochemistry and Biophysics, 430: 37–48.
  • European Advisory Services (EAS) (2008). Marketing Food Supplements, Fortified and Functional Foods in Europe: Legislation and Practice. ISBN: 9789080699533.
  • Faustino, M.V., Seca, A.M.L., Silveira, P., Silva, A.M.S. & Pinto, D.C.G.A. (2017). Gas chromatography–mass spectrometry profile of four Calendula L. taxa: a comparative analysis. Industrial Crops and Products, 104: 91–98.
  • Fernández-Bedmar, Z., Anter, J., de La Cruz-Ares, S., Muñoz-Serrano, A., Alonso-Moraga, Á. & Pérez-Guisado, J. (2011). Role of citrus juices and distinctive components in the modulation of degenerative processes: genotoxicity, antigenotoxicity, cytotoxicity, and longevity in Drosophila. Journal of Toxicology and Environmental Health, Part A, 74: 1052–1066.
  • Forester, S.C. & Lambert, J.D. (2011). The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Molecular Nutrition and Food Research, 55: 844–854.
  • Füzfai, Z., Boldizsár, I. & Molnár-Perl, I. (2008). Characteristic fragmentation patterns of the trimethylsilyl and trimethylsilyl–oxime derivatives of various saccharides as obtained by gas chromatography coupled to ion-trap mass spectrometry. Journal of Chromatography A, 1177: 183–189.
  • Gaivão, I. & Comendador, M.A. (1996). The w/w+ somatic mutation and recombination test (SMART) of Drosophila melanogaster for detecting reactive oxygen species: characterization of 6 strains. Mutation Research, 360: 145–151.
  • Gaivão, I., Sierra, L.M. & Comendador, M.A. (1999). The w/w+ SMART assay of Drosophila melanogaster detects the genotoxic effects of reactive oxygen species inducing compounds. Mutation Research, 440: 139–145.
  • Ghantous, A., Gali-Muhtasib, H., Vuorela, H., Saliba, N.A. & Darwiche, N. (2010). What made sesquiterpene lactones reach cancer clinical trials? Drug Discovery Today, 15: 668–678.
  • Golm Metabolome Database (GMD) (2019). http://gmd.mpimp-golm.mpg.de/( accessed 3. 11.19).
  • Gómez-Pinchetti, J.L., Fernández, E.C., Díez, P.M. & García-Reina, G. (1998). Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). Journal of Applied Phycology, 10: 383.
  • Guilherme, S., Gaivão, I., Santos, M.A. & Pacheco, M. (2012). DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide – elucidation of organ-specificity and the role of oxidative stress. Mutation Research, 743: 1–9.
  • Guiry, M.D. & Guiry, G.M. (2019). AlgaeBase. National University of Ireland, Galway. http://www.algaebase.org
  • Guo, T., Lin, Q., Li, X., Nie, Y., Wang, L., Shi, L., Xu, W., Hu, T., Guo, T. & Luo, F. (2017). Octacosanol attenuates inflammation in both RAW264.7 macrophages and a mouse model of colitis. Journal of Agricultural and Food Chemistry, 65: 3647–3658.
  • Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics, 476: 107–112.
  • Ho, C.K., Siu-Wai, C., Siu, P.M. & Benzie, I.F. (2013). Genoprotection and genotoxicity of green tea (Camellia sinensis): are they two sides of the same redox coin? Redox Report, 18: 150–154.
  • Hoek, C., Mann, D. & Jahns, H.M. (1995). Algae: An Introduction to Phycology. Cambridge University Press, Cambridge.
  • Holdt, S.L. & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23: 543–597.
  • Hrabovski, N., Sinadinović-Fišer, S., Nikolovski, B., Sovilj, M. & Borota, O. (2012). Phytosterols in pumpkin seed oil extracted by organic solvents and supercritical CO2. European Journal of Lipid Science and Technology, 114: 1204–1211.
  • Isca, V.M.S., Seca, A.M.L., Pinto, D.C.G.A., Silva, H. & Silva, A.M.S. (2014). Lipophilic profile of the edible halophyte Salicornia ramosissima. Food Chemistry, 165: 330–336.
  • Johnson, I.T. & Fenwick, G.R. (2000). Dietary Anticarcinogens and Antimutagens: Chemical and Biological Aspects. The Royal Society of Chemistry, Cambridge.
  • Knasmüller, S., Steinkellner, H., Majer, B.J., Nobis, E.C., Scharf, G. & Kassie, F. (2002). Search for dietary antimutagens and anticarcinogens: methodological aspects and extrapolation problems. Food and Chemical Toxicology, 40: 1051–1062.
  • Lahaye, M., Gómez‐Pinchetti, J., del Rio, M.J. & Garcia‐Reina, G. (1995). Natural decoloration, composition and increase in dietary fibre content of an edible marine algae, Ulva rigida (Chlorophyta), grown under different nitrogen conditions. Journal of the Science of Food and Agriculture, 68: 99–104.
  • Lambert, J.D. & Elias, R.J. (2010). The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Archives of Biochemistry and Biophysics, 501: 65–72.
  • Leandro, L.F., Munari, C.C., Sato, V.L.F.L., Alves, J.M., de Oliveira, P.F., Mastrocola, D.F.P., Martins, S. de P.L., Moraes, T. da S., de Oliveira, A.I., Tozatti, M.G., Cunha, W.R. & Tavares, D.C. (2013). Assessment of the genotoxicity and antigenotoxicity of (+)-usnic acid in V79 cells and Swiss mice by the micronucleus and comet assays. Mutation Research, 753: 101–106.
  • Lloyd, D.R. & Phillips, D.H. (1999). Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutation Research, 424: 23–36.
  • Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A.A. & Moreira, W.S.C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresources Technology, 97: 2402–2406.
  • Marques, A., Ferreira, J., Abreu, H., Pereira, R., Rego, A., Serôdio, J., Christa, G., Gaivão, I. & Pacheco, M. (2018). Searching for antigenotoxic properties of marine macroalgae dietary supplementation against endogenous and exogenous challenges. Journal of Toxicology and Environmental Health, Part A, 81: 1–18.
  • Martins, I., Oliveira, J.M., Flindt, M.R. & Marques, J.C. (1999). The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal). Acta Oecologica, 20: 259–265.
  • McAvoy, K.M. & Klug, J.L. (2005). Positive and negative effects of riverine input on the estuarine green alga Ulva intestinalis (syn. Enteromorpha intestinalis) (Linneaus). Hydrobiologia, 545: 1–9.
  • Merfort, I. (2011). Perspectives on sesquiterpene lactones in inflammation and cancer. Current Drug Targets, 12: 1560–1573.
  • Mezghani, S., Csupor, D., Bourguiba, I., Hohmann, J., Amri, M. & Bouaziz, M. (2016). Characterization of phenolic compounds of Ulva rigida (Chlorophycae) and its antioxidant activity. European Journal of Medicinal Plants, 12: 1–9.
  • Mohamed, S., Hashim, S.N. & Rahman, H.A. (2012). Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends in Food Science and Technology, 23: 83–96.
  • Ohta, Y., Ohashi, K., Matsura, T., Tokunaga, K., Kitagawa, A. & Yamada, K. (2008). Octacosanol attenuates disrupted hepatic reactive oxygen species metabolism associated with acute liver injury progression in rats intoxicated with carbon tetrachloride. Journal of Clinical Biochemistry and Nutrition, 42: 118–125.
  • Oyeyemi, I.T., Yekeen, O.M., Odusina, P.O., Ologun, T.M., Ogbaide, O.M., Olaleye, O.I. & Bakare, A.A. (2015). Genotoxicity and antigenotoxicity study of aqueous and hydro-methanol extracts of Spondias mombin L., Nymphaea lotus L. and Luffa cylindrical L. using animal bioassays. Interdisciplinary Toxicology, 8: 184–192.
  • Pangestuti, R. & Kim, S.-K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods, 3: 255–266.
  • Paniagua-Pérez, R., Madrigal-Bujaidar, E., Reyes-Cadena, S., Álvarez-González, I., Sánchez-Chapul, L., Pérez-Gallaga, J., Hernández, N., Flores-Mondragón, G. & Velasco, O. (2008). Cell protection induced by beta-sitosterol: inhibition of genotoxic damage, stimulation of lymphocyte production, and determination of its antioxidant capacity. Archives of Toxicology, 82: 615.
  • Petersson, G. (1969). Mass spectrometry of alditols as trimethylsilyl derivatives. Tetrahedron, 25: 4437–4443.
  • Pisani, P., Bray, F. & Parkin, D.M. (2002). Estimates of the world‐wide prevalence of cancer for 25 sites in the adult population. International Journal of Cancer, 97: 72–81.
  • Podmore, I.D., Griffiths, H.R., Herbert, K.E., Mistry, N., Mistry, P. & Lunec, J. (1998). Vitamin C exhibits pro-oxidant properties. Nature, 392: 559.
  • Procházková, D., Boušová, I. & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82: 513–523.
  • Rahmouni, N., Pinto, D.C.G.A., Santos, S.A.O., Beghidja, N. & Silva, A.M.S. (2018). Lipophilic composition of Scabiosa stellata L.: an underexploited plant from Batna (Algeria). Chemical Papers, 72: 753–762.
  • Razboršek, M.I., Vončina, D.B., Doleček, V. & Vončina, E. (2008). Determination of oleanolic, betulinic and ursolic acid in Lamiaceae and mass spectral fragmentation of their trimethylsilylated derivatives. Chromatographia, 67: 433–440.
  • Reis, P.A., Cassiano, J., Veiga, P., Rubal, M. & Sousa-Pinto, I. (2014). Fucus spiralis as monitoring tool of metal contamination in the northwest coast of Portugal under the European Water Framework Directives. Environmental Monitoring and Assessment, 186: 5447–5460.
  • Rezende, V.B., Lins, A.B., Rezende, A., Spanó, M.A. & Sousa, N.C. (2013). Avaliação do efeito modulador da levedura de cerveja (Saccharomyces cerevisiae M.) sobre a genotoxicidade induzida pela doxorrubicina em Drosophila melanogaster. Revista de Biologia Neotropical, 10: 9–17.
  • Rodeiro, I., Olguín, S., Santes, R., Herrera, J.A., Pérez, C.L., Mangas, R., Hernández, Y., Fernández, G., Hernández, I. & Hernández-Ojeda, S. (2015). Gas chromatography-mass spectrometry analysis of Ulva fasciata (green seaweed) extract and evaluation of its cytoprotective and antigenotoxic effects. Evidence-Based Complementary and Alternative Medicine. doi: 10.1155/2015/520598.
  • Rosenblat, M., Volkova, N. & Aviram, M. (2013). Pomegranate phytosterol (β-sitosterol) and polyphenolic antioxidant (punicalagin) addition to statin, significantly protected against macrophage foam cells formation. Atherosclerosis, 226: 110–117.
  • Ruiz, R.B. & Hernández, P.S. (2014). Diet and cancer: risk factors and epidemiological evidence. Maturitas, 77: 202–208.
  • Sathivel, A., Balavinayagamani, Hanumantha Rao, B.R. & Devaki, T. (2014). Sulfated polysaccharide isolated from Ulva lactuca attenuates d-galactosamine induced DNA fragmentation and necrosis during liver damage in rats. Pharmaceutical Biology, 52: 498–505.
  • Shahzad, N., Khan, W., MD, S., Ali, A., Saluja, S.S., Sharma, S., Al-Allaf, F.A., Abduljaleel, Z., Ibrahim, I.A.A., Abdel-Wahab, A.F., Afify, M.A. & Al-Ghamdi, S.S. (2017). Phytosterols as a natural anticancer agent: current status and future perspective. Biomedicine and Pharmacotherapy, 88: 786–794.
  • Sharmila, R. & Sindhu, G. (2017). Evaluate the antigenotoxicity and anticancer role of β-sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases, C-fos, C-jun, and endothelial growth factor receptor. Pharmacognosy Magazine, 13: 95–101.
  • Shimada, S., Yokoyama, N. & Masuda, M. (2007). Ulva (Ulvophyceae, Chlorophyta) in Hokkaido, Japan. Journal of Japanese Botany, 82: 205–216.
  • Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. (2014). The comet assay in Drosophila: neuroblast and hemocyte cells. In Genotoxicity and DNA Repair: A Practical Approach (Sierra, L.M. & Gaivão, I., editors), 483. Humana Press, Totowa, NJ.
  • Sousa, N.C., de Rezende, A.A.A., da Silva, R.M.G., Guterres, Z.R., Graf, U., Kerr, W.E. & Spanó, M.A. (2009). Modulatory effects of Tabebuia impetiginosa (Lamiales, Bignoniaceae) on doxorubicin-induced somatic mutation and recombination in Drosophila melanogaster. Genetics and Molecular Biology, 32: 382–388.
  • Suttiarporn, P., Chumpolsri, W., Mahatheeranont, S., Luangkamin, S., Teepsawang, S. & Leardkamolkarn, V. (2015). Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients, 7: 1672–1687.
  • Tabarsa, M., Rezaei, M., Ramezanpour, Z. & Waaland, J.R. (2012). Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal of the Science of Food and Agriculture, 92: 2500–2506.
  • Taboada, C., Millán, R. & Míguez, I. (2010). Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. Journal of the Science of Food and Agriculture, 90: 445–449.
  • Tanna, B. & Mishra, A. (2018). Metabolites unravel nutraceutical potential of edible seaweeds: an emerging source of functional food. Comprehensive Reviews in Food Science and Food Safety, 17: 1613–1624.
  • Valentão, P., Trindade, P., Gomes, D., de Pinho, P.G., Mouga, T. & Andrade, P.B. (2010). Codium tomentosum and Plocamium cartilagineum: chemistry and antioxidant potential. Food Chemistry, 119: 1359–1368.
  • Wang, R., Paul, V.J. & Luesch, H. (2013). Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2–ARE pathway. Free Radical Biology and Medicine, 57: 141–153.
  • Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E. & Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29: 949–982.
  • Yamori, Y., Miura, A. & Taira, K. (2001). Implications from and for food cultures for cardiovascular diseases: Japanese food, particularly Okinawan diets. Asia Pacific Journal of Clinical Nutrition, 10: 144–145.
  • Yen, G.-C., Duh, P.-D. & Tsai, H.-L. (2002). Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chemistry, 79: 307–313.
  • Yildiz, G., Celikler, S., Vatan, O. & Dere, S. (2012). Determination of the anti-oxidative capacity and bioactive compounds in green seaweed Ulva rigida C. Agardh. International Journal of Food Properties, 15: 1182–1189.
  • Yoshida, Y. & Niki, E. (2003). Antioxidant effects of phytosterol and its components. Journal of Nutritional Science and Vitaminology, 49: 277–280.
  • Yuan, Y. & Walsh, N. (2006). Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food and Chemical Toxicology, 44: 1144–1150.
  • Zar, J. (1996). Biostatistical Analysis. Prentice Hall, Upper Saddle River, NJ.
  • Zeiger, E. & Tice, R. (1997). Saw palmetto (Serenoa repens) and one of its constituent sterols: β-sitosterol. Review of Toxicological Literature. 66 pp.
  • Zhang, S., Won, Y.-K., Shen, C.-N.O. & H.-M. (2005). Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Current Medicinal Chemistry, 5: 239–249.
  • Zubia, M., Fabre, M.S., Kerjean, V., Le Lann, K., Stiger-Pouvreau, V., Fauchon, M. & Deslandes, E. (2009). Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chemistry, 116: 693–701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.