239
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mitochondrial genome structure, phylogenetic analyses and substitution rate estimation of the Oedogoniales

, , , , ORCID Icon &
Pages 1-12 | Received 15 Sep 2021, Accepted 23 Jan 2022, Published online: 04 Apr 2022

References

  • Agardh, C.A. (1817). Synopsis Algarum Scandinaviae, adjecta dispositione universali Algarum. Lundae.
  • Alberghina, J.S., Vigna, M.S. & Confalonieri, V.A. (2006). Phylogenetic position of the Oedogoniales within the green algae (Chlorophyta) and the evolution of the absolute orientation of the flagellar apparatus. Plant Systematics and Evolution, 261: 151–163.
  • Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B – Statistical Methodology, 57: 289–300.
  • Bernt, M., Donath, A., Juehling, F., Externbrink, F., Florentz, C., Fritzsch, G., Puetz, J., Middendorf, M. & Stadler, P.F. (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69: 313–319.
  • Booton, G.C., Floyd, G.L. & Fuerst, P.A. (1998). Origins and affinities of the filamentous green algal orders Chaetophorales and Oedogoniales based on 18S rRNA gene sequences. Journal of Phycology, 34: 312–318.
  • Buchheim, M.A., Michalopulos, E.A. & Buchheim, J.A. (2001). Phylogeny of the Chlorophyceae with special reference to the Sphaeropleales: a study of 18S and 26S rDNA data. Journal of Phycology, 37: 819–835.
  • Bui Quang, M., Minh Anh Thi, N. & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30: 1188–1195.
  • Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25: 1972–1973.
  • Chen, W., Wang, Y., Han, D., Zhu, X., Xie, S., Han, D. & Hu, Q. (2019). Two filamentous microalgae as feed ingredients improved flesh quality and enhanced antioxidant capacity and immunity of the gibel carp (Carassius auratus gibelio). Aquaculture Nutrition, 25: 1145–1155.
  • Choubert, G., Mendes-Pinto, M.M. & Morais, R. (2006). Pigmenting efficacy of astaxanthin fed to rainbow trout Oncorhynchus mykiss: effect of dietary astaxanthin and lipid sources. Aquaculture, 257: 429–436.
  • Darling, A.E., Mau, B. & Perna, N.T. (2010). progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE, 5: e11147.
  • Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9: 772.
  • De Bary, A. (1854). Ueber die Algengattungen Oedogonium und Bulbochaete. Abhandlung Senckenberg Naturf Ges. Frankfurt.
  • de Sousa, C.B., Cox, C.J., Brito, L., Pavao, M.M., Pereira, H., Ferreira, A., Ginja, C., Campino, L., Bermejo, R., Parente, M. & Varela, J. (2019). Improved phylogeny of brown algae Cystoseira (Fucales) from the Atlantic-Mediterranean region based on mitochondrial sequences. PLoS ONE, 14: e0210143.
  • Durand, J.-D. & Borsa, P. (2015). Mitochondrial phylogeny of grey mullets (Acanthopterygii: Mugilidae) suggests high proportion of cryptic species. Comptes Rendus Biologies, 338: 266–277.
  • Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32: 1792–1797.
  • Featherston, J., Arakaki, Y., Nozaki, H., Durand, P.M. & Smith, D.R. (2016). Inflated organelle genomes and a circular-mapping mtDNA probably existed at the origin of coloniality in volvocine green algae. European Journal of Phycology, 51: 369–377.
  • Gauthier-Lièvre, L. (1964). Oedogoniacées Africaines. Verlag von J. Cramer, Stuttgart.
  • Gemeinhardt, K. (1939). Oedogoniales. In Rabenhorst’s Kryptogamenflora von Deutschland und der Schweiz, 12. Leipzig.
  • Graham, L.E. & Wilcox, L.W. (2000). Algae. Prentice Hall, Upper Saddle River, NJ.
  • Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59: 307–321.
  • Hall, J.D., Karol, K.G., McCourt, R.M. & Delwiche, C.F. (2008). Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. Journal of Phycology, 44: 467–477.
  • Hamaji, T., Kawai-Toyooka, H., Toyoda, A., Minakuchi, Y., Suzuki, M., Fujiyama, A., Nozaki, H. & Smith, D.R. (2017). Multiple independent changes in mitochondrial genome conformation in chlamydomonadalean algae. Genome Biology and Evolution, 9: 993–999.
  • Hamaji, T., Smith, D. R., Noguchi, H., Toyoda, A., Suzuki, M., Kawai-Toyooka, H., Fujiyama, A., Nishii, I., Marriage, T., Olson, B. J. S. C. & Nozaki, H. (2013). Mitochondrial and plastid genomes of the colonial green alga Gonium pectorale give insights into the origins of organelle DNA architecture within the Volvocales. PLoS ONE, 8: e57177.
  • Hirn, K.E. (1900). Monographie und Iconographie der Oedogoniaceen. Acta Societatis Scientiarum Fennicae, 27: 1–395.
  • Hu, Y., Xing, W., Hu, Z. & Liu, G. (2020). Phylogenetic analysis and substitution rate estimation of colonial volvocine algae based on mitochondrial genomes. Genes, 11: 115.
  • Hu, Y., Xing, W., Song, H., Liu, G. & Hu, Z. (2019a). Analysis of mitochondrial and chloroplast genomes in two volvocine algae: Eudorina elegans and Eudorina cylindrica (Volvocaceae, Chlorophyta). European Journal of Phycology, 54: 193–205.
  • Hu, Y., Xing, W., Song, H., Zhu, H., Liu, G. & Hu, Z. (2019b). Evolutionary analysis of unicellular species in Chlamydomonadales through chloroplast genome comparison with the colonial volvocine algae. Frontiers in Microbiology, 10: 1351.
  • Islam, N.A.K.M. & Sarma, P. (1963). Two new species of terrestrial Oedogonium from east Pakistan. Transactions of the American Microscopical Society, 82: 74–77.
  • Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T. & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 9: 5114.
  • Jao, C.C. (1979). Monographia Oedogoniales Sinicae. Science Press, Beijing.
  • Jyonouchi, H., Sun, S.I. & Gross, M. (1995). Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: astaxanthin, a carotenoid without vitamin a activity, enhances in vitro immunoglobulin production in response to a t‐dependent stimulant and antigen. Nutrition and Cancer, 23: 171–183.
  • Katoh, K. & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution, 30: 772–780.
  • Krienitz, L., Hegewald, E., Hepperle, D. & Wolf, M. (2003). The systematics of coccoid green algae: 18S rRNA gene sequence data versus morphology. Biologia, 58: 437–446.
  • Kumar, S., Stecher, G. & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870–1874.
  • Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34: 772–773.
  • Lang, B.F., Laforest, M.-J. & Burger, G. (2007). Mitochondrial introns: a critical view. Trends In Genetics, 23: 119–125.
  • Lawton, R.J., de Nys, R., Skinner, S. & Paul, N.A. (2014). Isolation and identification of Oedogonium species and strains for biomass applications. PLoS ONE, 9: e90223.
  • Lee, J.M., Song, H.J., Park, S.I., Lee, Y.M., Jeong, S.Y., Cho, T.O., Kim, J.H., Choi, H.-G., Choi, C.G., Nelson, W.A., Fredericq, S., Bhattacharya, D. & Yoon, H.S. (2018). Mitochondrial and plastid genomes from coralline red algae provide insights into the incongruent evolutionary histories of organelles. Genome Biology and Evolution, 10: 2961–2972.
  • Li, M., Wu, W., Zhou, P., Xie, F., Zhou, Q. & Mai, K. (2014). Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea. Aquaculture, 434: 227–232.
  • Lim, K.C., Yusoff, F.M., Shariff, M. & Kamarudin, M.S. (2017). Astaxanthin as feed supplement in aquatic animals. Reviews in Aquaculture, 10: 738–773.
  • Liu, G.X. & Hu, Z.Y. (2004). Predominant occurrence of apical cell divisions in Oedogoniam pakistanense and its phylogenetic significance. Phycologia, 43: 669–671.
  • Liu, F., Shi, H.-Z., Guo, Q.-S., Yu, Y.-B., Wang, A.-M., Lv, F. & Shen, W.-B. (2016). Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology, 51: 125–135.
  • Lohse, M., Drechsel, O. & Bock, R. (2007). OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics, 52: 267–274.
  • Lorenz, R.T. & Cysewski, G.R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18: 160–167.
  • Lowe, T.M. & Chan, P.P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44: W54–W57.
  • Lu, H.F., Su, T.J., Luo, A.R., Zhu, C.D. & Wu, C.S. (2013). Characterization of the complete mitochondrion genome of diurnal moth Amata emma (Butler) (Lepidoptera: Erebidae) and its phylogenetic implications. PLoS ONE, 8: e72410.
  • Mei, H., Luo, W., Liu, G.X. & Hu, Z.Y. (2007). Phylogeny of Oedogoniales (Chlorophyceae, Chlorophyta) inferred from 18S rDNA sequences with emphasis on the relationships in the genus Oedogonium based on ITS-2 sequences. Plant Systematics and Evolution, 265: 179–191.
  • Michel, F., Umesono, K. & Ozeki, H. (1989). Comparative and functional anatomy of group II catalytic introns – a review. Gene, 82: 5–30.
  • Michel, F. & Westhof, E. (1990). Modelling of the three-dimensional architecture of Group I catalytic introns based on comparative sequence analysis. Journal of Molecular Biology, 216: 585–610.
  • Moore, L.J. & Coleman, A.W. (1989). The linear 20 kb mitochondrial genome of Pandorina morum (Volvocaceae, Chlorophyta). Plant Molecular Biology, 13: 459–465.
  • Mrozińska, T. (1985). Oedogoniophyceae: Oedogoniales. Süßwasserflora von Mitteleuropa 14, Chlorophyta VI. Gustav Fischer Verlag, Stuttgart.
  • Peden, J. (1999). Analysis of codon usage. UK: The University of Nottingham.
  • Pollock, D.D., Zwickl, D.J., McGuire, J.A. & Hillis, D.M. (2002). Increased taxon sampling is advantageous for phylogenetic inference. Systematic Biology, 51: 664.
  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539–542.
  • Shoup, S. & Lewis, L.A. (2003). Polyphyletic origin of parallel basal bodies in swimming cells of Chlorophycean green algae (Chlorophyta). Journal of Phycology, 39: 789–796.
  • Smith, D.R., Hamaji, T., Olson, B.J.S.C., Durand, P.M., Ferris, P., Michod, R.E., Featherston, J., Nozaki, H. & Keeling, P.J. (2013). Organelle genome complexity scales positively with organism size in volvocine green algae. Molecular Biology and Evolution, 30: 793–797.
  • Smith, D.R. & Lee, R.W. (2010). Low nucleotide diversity for the expanded organelle and nuclear genomes of Volvox carteri supports the mutational-hazard hypothesis. Molecular Biology and Evolution, 27: 2244–2256.
  • Stahl, E. (1891). Oedocladium protonema, eine neue Oedogoniaceen-Gattung. Jahrbuch der Wissenschaften Botanik, 23: 339–348.
  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313.
  • Sun, C.-H., Liu, H.-Y., Xu, N., Zhang, X.-L., Zhang, Q. & Han, B.-P. (2021). Mitochondrial genome structures and phylogenetic analyses of two tropical Characidae fishes. Frontiers in Genetics, 12: 80.
  • Tiffany, L.H. (1937). North American Flora: Oedogoniales. Botanical Garden, New York.
  • Trifinopoulos, J., Lam-Tung, N., von Haeseler, A. & Minh, B.Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44: W232–W35.
  • Turmel, M., Belanger, A.-S., Otis, C. & Lemieux, C. (2020). Complete mitogenomes of the chlorophycean green algae Bulbochaete rectangularis var. hiloensis (Oedogoniales) and Stigeoclonium helveticum (Chaetophorales) provide insight into the sequence of events that led to the acquisition of a reduced-derived pattern of evolution in the Chlamydomonadales and Sphaeropleales. Mitochondrial DNA Part B–Resources, 5: 611–613.
  • van Den Hoek, C., Mann, D.G. & Jahns, U.M. (1995). Algae: An Introduction to Phycology. Cambridge University Press, Cambridge.
  • Vanhove, M.P.M., Briscoe, A.G., Jorissen, M.W.P., Littlewood, D.T.J. & Huyse, T. (2018). The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae). BMC Genomics, 19: 1–16.
  • Xia, X. & Xie, Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity, 92: 371–373.
  • Xiong, Q., Hu, Y., Liu, B., Zhu, H., Liu, G. & Hu, Z. (2021). Chloroplast genomes and phylogenetic analysis of two species of Oedocladium (Oedogoniales, Chlorophyta). European Journal of Phycology, 56: 403–415.
  • Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24: 1586–1591.
  • Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020). PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20: 348–355.
  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. (2018). ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19: 15–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.