308
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Distinct physiological responses of Coccolithus braarudii life cycle phases to light intensity and nutrient availability

, , , , , , , & show all
Pages 58-71 | Received 09 Sep 2021, Accepted 12 Mar 2022, Published online: 04 May 2022

References

  • Avrahami, Y. & Frada, M.J. (2020). Detection of phagotrophy in the marine phytoplankton group of the coccolithophores (Calcihaptophycidae, Haptophyta) during nutrient-replete and phosphate-limited growth. Journal of Phycology, 56: 1103–1108.
  • Bach, L.T., Mackinder, L.C.M., Schulz, K.G., Wheeler, G., Schroeder, D.C., Brownlee, C. & Riebesell, U. (2013). Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199: 121–134.
  • Baumann, K.H., Bockel, B. & Frenz, M. (2004). Coccolith contribution to south Atlantic carbonate sedimentation. Coccolithophores: From Molecular Processes to Global Impact (Thierstein, H.R. & Young, J.R., editors), 367–402. Springer, Berlin.
  • Benner, I. (2008). The utilization of organic nutrients in marine phytoplankton with emphasis on coccolithophores. PhD thesis, 1–125. Universitat Bremen.
  • Bolton, C.T. & Stoll, H.M. (2013). Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature, 500: 558–562.
  • Broecker, W. & Clark, E. (2009). Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography, 24: PA3205.
  • Cachao, M. & Moita, M.T. (2000). Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia. Marine Micropaleontology, 39: 131–155.
  • Cros, L. & Estrada, M. (2013). Holo-heterococcolithophore life cycles: ecological implications. Marine Ecology Progress Series, 492: 57–68.
  • D’Amario, B., Ziveri, P., Grelaud, M., Oviedo, A. & Kralj, M. (2017). Coccolithophore haploid and diploid distribution patterns in the Mediterranean Sea: can a haplo-diploid life cycle be advantageous under climate change? Journal of Plankton Research, 39: 781–794.
  • Daniels, C.J., Poulton, A.J., Young, J.R., Esposito, M., Humphreys, M.P., Ribas-Ribas, M., Tynan, E. & Tyrrell, T. (2016). Species-specific calcite production reveals Coccolithus pelagicus as the key calcifier in the Arctic Ocean. Marine Ecology Progress Series, 555: 29–47.
  • De Vries, J., Monteiro, F., Wheeler, G., Poulton, A., Godrijan, J., Cerino, F., Malinverno, E., Langer, G. & Brownlee, C. (2021). Haplo-diplontic life cycle expands coccolithophore niche. Biogeosciences, 18: 1161–1184.
  • Drescher, B., Dillaman, R.M. & Taylor, A.R. (2012). Coccolithogenesis in Scyphosphaera apsteinii (Prymnesiophyceae). Journal of Phycology, 48: 1343–1361.
  • Durak, G.M., Brownlee, C. & Wheeler, G.L. (2017). The role of the cytoskeleton in biomineralisation in haptophyte algae. Scientific Reports, 7.
  • Frada, M.J., Bendif, E.M., Keuter, S. & Probert, I. (2018). The private life of coccolithophores. Perspectives in Phycology, 6: 11–30.
  • Frada, M.J., Bidle, K.D., Probert, I. & De Vargas, C. (2012). In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environmental Microbiology, 14: 1558–1569.
  • Gafar, N.A., Eyre, B.D. & Schulz, K.G. (2019). A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton. Scientific Reports, 9: 2486.
  • Gafar, N.A. & Schulz, K.G. (2018). A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections. Biogeosciences, 15: 3541–3560.
  • Gerecht, A.C., Supraha, L., Edvardsen, B., Langer, G. & Henderiks, J. (2015). Phosphorus availability modifies carbon production in Coccolithus pelagicus (Haptophyta). Journal of Experimental Marine Biology and Ecology, 472: 24–31.
  • Godrijan, J., Drapeau, D.T. & Balch, W.M. (2022). Osmotrophy of dissolved organic carbon by coccolithophores in darkness. New Phytologist, 233: 781–794.
  • Hoffmann, R., Kirchlechner, C., Langer, G., Wochnik, A.S., Griesshaber, E., Schmahl, W.W. & Scheu, C. (2015). Insight into Emiliania huxleyi coccospheres by focused ion beam sectioning. Biogeosciences, 12: 825–834.
  • Houdan, A., Probert, I., Van Lenning, K. & Lefebvre, S. (2005). Comparison of photosynthetic responses in diploid and haploid life-cycle phases of Emiliania huxleyi (Prymnesiophyceae). Marine Ecology Progress Series, 292: 139–146.
  • Houdan, A., Probert, I., Zatylny, C., Veron, B. & Billard, C. (2006). Ecology of oceanic coccolithophores. I. Nutritional preferences of the two stages in the life cycle of Coccolithus braarudii and Calcidiscus leptoporus. Aquatic Microbial Ecology, 44: 291–301.
  • Klaas, C. & Archer, D.E. (2002). Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Global Biogeochemical Cycles, 16: 1116.
  • Kleijne, A. (1990). Distribution and malformation of extant calcareous nannoplankton in the Indonesian seas. Marine Micropaleontology, 16: 293–316.
  • Kottmeier, D.M., Terbruggen, A., Wolf-Gladrow, D.A. & Thoms, S. (2020). Diel variations in cell division and biomass production of Emiliania huxleyi – consequences for the calculation of physiological cell parameters. Limnology and Oceanography, 65: 1781–1800.
  • Langer, G., De Nooijer, L.J. & Oetjen, K. (2010). On the role of the cytoskeleton in coccolith morphogenesis: the effect of cytoskeleton inhibitors. Journal of Phycology, 46: 1252–1256.
  • Langer, G., Oetjen, K. & Brenneis, T. (2012). Calcification of Calcidiscus leptoporus under nitrogen and phosphorus limitation. Journal of Experimental Marine Biology and Ecology, 413: 131–137.
  • Langer, G., Oetjen, K. & Brenneis, T. (2013). Coccolithophores do not increase particulate carbon production under nutrient limitation: a case study using Emiliania huxleyi (PML B92/11). Journal of Experimental Marine Biology and Ecology, 443: 155–161.
  • Langer, G., Taylor, A.R., Walker, C.E., Meyer, E.M., Ben Joseph, O., Gal, A., Harper, G.M., Probert, I., Brownlee, C. & Wheeler, G.L. (2021). Role of silicon in the development of complex crystal shapes in coccolithophores. New Phytologist, 231: 1845–1857.
  • Loebl, M., Cockshutt, A.M., Campbell, D.A. & Finkel, Z.V. (2010). Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnology and Oceanography, 55: 2150–2160.
  • Malinverno, E., Triantaphyllou, M.V., Stavrakakis, S., Ziveri, P. & Lykousis, V. (2009). Seasonal and spatial variability of coccolithophore export production at the South-Western margin of Crete (Eastern Mediterranean). Marine Micropaleontology, 71: 131–147.
  • McConnell, G., Tragardh, J., Amor, R., Dempster, J., Reid, E. & Amos, W.B. (2016). A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. Elife, 5: e18659.
  • McKie-Krisberg, Z.M. & Sanders, R.W. (2014). Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans (vol. 8, p. 1953, 2014). ISME Journal, 8: 2151–2151.
  • Menden-Deuer, S. & Lessard, E.J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography, 45: 569–579.
  • Muller, M.N., Antia, A.N. & Laroche, J. (2008). Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 53: 506–512.
  • Nanninga, H.J. & Tyrrell, T. (1996). Importance of light for the formation of algal blooms by Emiliania huxleyi. Marine Ecology Progress Series, 136: 195–203.
  • Okada, H. & Honjo, S. (1975). Distribution of coccolithophores in marginal seas along Western Pacific Ocean and in Red-Sea. Marine Biology, 31: 271–285.
  • Oviedo, A.M., Langer, G. & Ziveri, P. (2014). Effect of phosphorus limitation on coccolith morphology and element ratios in Mediterranean strains of the coccolithophore Emiliania huxleyi. Journal of Experimental Marine Biology and Ecology, 459: 105–113.
  • Paasche, E. (1969). Light-dependent coccolith formation in the two forms of Coccolithus pelagicus. Archives Mikrobiology, 67: 199–208.
  • Perrin, L., Probert, I., Langer, G. & Aloisi, G. (2016). Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores. Biogeosciences, 13: 5983–6001.
  • Poulton, A.J., Adey, T.R., Balch, W.M. & Holligan, P.M. (2007). Relating coccolithophore calcification rates to phytoplankton community dynamics: regional differences and implications for carbon export. Deep-Sea Research Pt II, 54: 538–557.
  • Poulton, A.J., Charalampopoulou, A., Young, J.R., Tarran, G.A., Lucas, M.I. & Quartly, G.D. (2010). Coccolithophore dynamics in non-bloom conditions during late summer in the central Iceland Basin (July–August 2007). Limnology and Oceanography, 55: 1601–1613.
  • Ragni, M., Airs, R.L., Leonardos, N. & Geider, R.J. (2008). Photoinhibition of PSII in Emiliania huxleyi (Haptophyta) under high light stress: the roles of photoacclimation, photoprotection, and photorepair. Journal of Phycology, 44: 670–683.
  • Rokitta, S.D., De Nooijer, L.J., Trimborn, S., De Vargas, C., Rost, B. & John, U. (2011). Transcriptome analyses reveal differential gene expression patterns between the life-cycle stages of Emiliania huxleyi (Haptophyta) and reflect specialization to different ecological niches. Journal of Phycology, 47: 829–838.
  • Rokitta, S.D., Von Dassow, P., Rost, B. & John, U. (2014). Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis. BMC Genomics, 15: 1051.
  • Rokitta, S.D., Von Dassow, P., Rost, B. & John, U. (2016). P- and N-depletion trigger similar cellular responses to promote senescence in eukaryotic phytoplankton. Frontiers in Marine Science 3: 109.
  • Saez, A.G., Probert, I., Geisen, M., Quinn, P., Young, J.R. & Medlin, L.K. (2003). Pseudo-cryptic speciation in coccolithophores. Proceedings of the National Academy of Sciences USA, 100: 7163–7168.
  • Schaub, I., Wagner, H., Graeve, M. & Karsten, U. (2017). Effects of prolonged darkness and temperature on the lipid metabolism in the benthic diatom Navicula perminuta from the Arctic Adventfjorden, Svalbard. Polar Biology, 40: 1425–1439.
  • Shemi, A., Schatz, D., Fredricks, H.F., Van Mooy, B.a.S., Porat, Z. & Vardi, A. (2016). Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi. New Phytologist, 211: 886–898.
  • Stoecker, D.K. & Lavrentyev, P.J. (2018). Mixotrophic plankton in the polar seas: a pan-Arctic review. Frontiers in Marine Science, 5: 292.
  • Supraha, L., Ljubesic, Z., Mihanovic, H. & Henderiks, J. (2016). Coccolithophore life-cycle dynamics in a coastal Mediterranean ecosystem: seasonality and species-specific patterns. Journal of Plankton Research, 38: 1178–1193.
  • Taylor, A.R., Russell, M.A., Harper, G.M., Collins, T.F.T. & Brownlee, C. (2007). Dynamics of formation and secretion of heterococcoliths by Coccolithus pelagicus ssp braarudii. European Journal of Phycology, 42: 125–136.
  • Tyrrell, T. & Merico, A. (2004). Emiliania huxleyi: bloom observations and the conditions that induce them. Coccolithophores: From Molecular Processes to Global Impact (Thierstein, H.R. & Young, J.R., editors), 75–97. Springer, Berlin.
  • Tyrrell, T., Schneider, B., Charalampopoulou, A. & Riebesell, U. (2008). Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences, 5: 485–494.
  • Von Dassow, P., John, U., Ogata, H., Probert, I., Bendif, E., Kegel, J.U., Audic, S., Wincker, P., Da Silva, C., Claverie, J.M., Doney, S., Glover, D.M., Flores, D.M., Herrera, Y., Lescot, M., Garet-Delmas, M.J. & De Vargas, C. (2015). Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME Journal, 9: 1365–1377.
  • Von Dassow, P., Ogata, H., Probert, I., Wincker, P., Da Silva, C., Audic, S., Claverie, J.M. & De Vargas, C. (2009). Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biology, 10: R114.
  • Walker, C.E., Taylor, A.R., Langer, G., Durak, G.M., Heath, S., Probert, I., Tyrrell, T., Brownlee, C. & Wheeler, G.L. (2018). The requirement for calcification differs between ecologically important coccolithophore species. New Phytologist, 220: 147–162.
  • Wordenweber, R., Rokitta, S.D., Heidenreich, E., Corona, K., Kirschhofer, F., Fahl, K., Klocke, J.L., Kottke, T., Brenner-Weiss, G., Rost, B., Mussgnug, J.H. & Kruse, O. (2018). Phosphorus and nitrogen starvation reveal life-cycle specific responses in the metabolome of Emiliania huxleyi (Haptophyta). Limnology and Oceanography, 63: 203–226.
  • Young, J.R., Geisen, M., Cros, L., Kleijne, A., Sprengel, C., Probert, I. & Østergaard, J. (2003). A guide to extant coccolithophore taxonomy. Journal of Nannoplankton Research, 1: 1–132.
  • Young, J.R. & Ziveri, P. (2000). Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research Part II, 47: 9–11.
  • Zhang, Y., Bach, L.T., Schulz, K.G. & Riebesell, U. (2015). The modulating effect of light intensity on the response of the coccolithophore Gephyrocapsa oceanica to ocean acidification. Limnology and Oceanography, 60: 2145–2157.
  • Ziveri, P., De Bernardi, B., Baumann, K.H., Stoll, H.M. & Mortyn, P.G. (2007). Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean. Deep-Sea Research Pt II, 54: 659–675.
  • Ziveri, P., Thunell, R.C. & Rio, D. (1995). Seasonal changes in coccolithophore densities in the southern California Bight during 1991–1992. Deep-Sea Research Pt I, 42: 1881.
  • Zondervan, I. (2007). The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores – a review. Deep-Sea Research Pt II, 54: 521–537.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.