1,121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Physiological characterisation of the calcified alga Corallina officinalis (Rhodophyta) from the leading to trailing edge in the Northeast Atlantic

ORCID Icon, ORCID Icon & ORCID Icon
Pages 83-98 | Received 16 Jul 2021, Accepted 09 Apr 2022, Published online: 20 May 2022

References

  • Abeli, T., Gentili, R., Mondoni, A., Orsenigo, S. & Rossi, G. (2014). Effects of marginality on plant population performance. Journal of Biogeography, 41: 239–249.
  • Adey, W.H. & MacIntyre, I.G. (1973). Crustose coralline algae: a re-evaluation in the geological sciences. Geological Society of America Bulletin, 84: 883–904.
  • Bozinovic, F., Calosi, P. & Spicer, J.I. (2011). Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics, 42: 155–179.
  • Brodie, J., Walker, R.H., Williamson, C. & Irvine, L.M. (2013). Epitypification and redescription of Corallina officinalis L., the type of the genus, and C. elongata Ellis et Solander (Corallinales, Rhodophyta). Cryptogamie, Algologie, 34: 49–56.
  • Brodie, J., Williamson, C.J., Smale, D.A., Kamenos, N.A., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C., Anderson, K.M. & Asnaghi, V. (2014). The future of the north-east Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4: 2787–2798.
  • Brody, H.M. (2004). Phenotypic Plasticity: Functional and Conceptual Approaches. Oxford University Press, Oxford.
  • Brown, J.H. (1984). On the relationship between abundance and distribution of species. American Naturalist, 124: 255–279.
  • Brussard, P.F. (1984). Geographic patterns and environmental gradients: the central-marginal models in Drosophila revisited. Annual Review of Ecology and Systematics, 15: 25–64.
  • Calosi, P., Melatunan, S., Turner, L.M., Artioli, Y., Davidson, R.L., Byrne, J.J., Viant, M.R., Widdicombe, S. & Rundle, S.D. (2017). Regional adaptation defines sensitivity to future ocean acidification. Nature Communications, 8: 1–10.
  • Chisholm, J.R.M. & Gattuso, J. (1991). Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnology and Oceanography, 36: 1232–1239.
  • Coull, B.C. & Wells, J.B.J. (1983). Refuges from fish predation – experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology, 64: 1599–1609.
  • CSL Computer Service Langenbach GmbH. (2019). Online Tides and Currents Predictions. Retrieved from: https://tides.mobilegeographics.com/.
  • Davenport, J., Butler, A. & Cheshire, A. (1999). Epifaunal composition and fractal dimensions of marine plants in relation to emersion. Journal of the Marine Biological Association of the United Kingdom, 79: 351–355.
  • Dayton, P.K. (1972). Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. Proceedings of the Colloquium on Conservation Problems in Antarctica. Allen Press, Lawrence, KS.
  • Dickson, A.G. (2007) Guide to Best Practices for Ocean CO2 Measurement. Sidney, British Columbia, North Pacific Marine Science Organization.
  • Digby, P.S.B. (1977). Growth and calcification in the coralline algae, Clathromorphum circumscriptum and Corallina officinalis, and the significance of pH in relation to precipitation. Journal of the Marine Biological Association of the United Kingdom, 57: 1095–1109.
  • Eckert, C.G., Samis, K.E. & Lougheed, S.C. (2008). Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Molecular Ecology, 17: 1170–1188.
  • Egilsdottir, H., Noisette, F., Noel, L.M.-L.J., Olafsson, J. & Martin, S. (2013). Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology, 160: 2103–2112.
  • Egilsdottir, H., Olafsson, J. & Martin, S. (2016). Photosynthesis and calcification in the articulated coralline alga Ellisolandia elongata (Corallinales, Rhodophyta) from intertidal rock pools. European Journal of Phycology, 51: 59–70.
  • Gaston, K.J. (2009). Geographic range limits: achieving synthesis. Proceedings of the Royal Society B, 276: 1395–1406.
  • Grahame, J. & Hanna, F.S. (1989). Factors affecting the distribution of the epiphytic fauna of Corallina officinalis (L.) on an exposed rocky shore. Ophelia, 30: 113–129.
  • Guiry, M.D. & Guiry, G.M. (2021). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on April 4, 2022.
  • Hofmann, G.E., Evans, T.G., Kelly, M.W., Padilla-Gamiño, J.L., Blanchette, C.A., Washburn, L., Chan, F., McManus, M.A., Menge, B.A., Gaylord, B. & Hill, T.M. (2014). Exploring local adaptation and the ocean acidification seascape-studies in the California Current Large Marine Ecosystem. Biogeosciences, 11: 1053–1064.
  • Hofmann, L., Yildiz, G., Hanelt, D. & Bischof, K. (2012). Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels. Marine Biology, 159: 783–792.
  • IBM Corporation (2016). IBM SPSS Statistics for Windows, Version 25.0. (software). IBM Corporation, Armonk, NY.
  • Johansen, H.W. (1981). Coralline Algae, A First Synthesis. CRC Press, Boca Raton, FL.
  • Kelaher, B.P., Chapman, M.G. & Underwood, A.J. (2001). Spatial patterns of diverse macrofaunal assemblages in coralline turf and their associations with environmental variables. Journal of the Marine Biological Association of the United Kingdom, 81: 917–930.
  • Kelaher, B.P., Underwood, A.J. and Chapman, M.G. (2003). Experimental transplantations of coralline algal turf to demonstrate causes of differences in macrofauna at different tidal heights. Journal of Experimental Marine Biology and Ecology, 282: 23–41.
  • Kolzenburg, R., D’Amore, F., McCoy, S.J. & Ragazzola, F. (2021). Marginal populations show physiological adaptations and resilience to future climatic changes across a North Atlantic distribution. Environmental and Experimental Botany, 188: p.104522.
  • Kolzenburg, R., Nicastro, K.R., McCoy, S.J., Ford, A.T., Zardi, G.I. & Ragazzola, F. (2019). Understanding the margin squeeze: differentiation in fitness‐related traits between central and trailing edge populations of Corallina officinalis. Ecology and Evolution, 9: 5787–5801.
  • Liuzzi, M.G. & Gappa, J.L. (2008). Macrofaunal assemblages associated with coralline turf: species turnover and changes in structure at different spatial scales. Marine Ecology Progress Series, 363: 147–156.
  • Martin, S., Cohu, S., Vignot, C., Zimmerman, G. & Gattuso, J.P. (2013). One‐year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecology and Evolution, 3: 676–693.
  • Martínez, B., Arenas, F., Rubal, M., Burgués, S., Esteban, R., García-Plazaola, I., Figueroa, F.L., Pereira, R., Saldaña, L., Sousa-Pinto, I. & Trilla, A. (2012). Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit. Oecologia, 170: 341–353.
  • Martone, P.T., Alyono, M. & Stites, S. (2010). Bleaching of an intertidal coralline alga: untangling the effects of light, temperature, and desiccation. Marine Ecology Progress Series, 416: 57–67.
  • Mayr, E. (1963). Animal Species and Evolution. Harvard University Press, MA.
  • McCoy, S.J. (2013). Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the Northeast Pacific. Journal of Phycology, 49: 830–837.
  • McCoy, S.J. & Widdicombe, S. (2019). Thermal plasticity is independent of environmental history in an intertidal seaweed. Ecology and Evolution, 9: 13402–13412.
  • Mortensen, J. (2019). Oceanography. HAFRANNSÓKNASTOFNUN – Marine Research Institute, Iceland, Hydrographic Dept. https://sjora.hafro.is/.
  • Nelson, W.A. (2009). Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Marine and Freshwater Research, 60: 787–801.
  • Noël, L.M.L.J., Hawkins, S.J., Jenkins, S.R. & Thompson, R.C. (2009). Grazing dynamics in intertidal rockpools: connectivity of microhabitats. Journal of Experimental Marine Biology and Ecology, 370: 9–17.
  • Noisette, F. & Hurd, C. (2018). Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Functional Ecology, 32: 1329–1342.
  • Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T. & Tennent, W.J. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399: 579–583.
  • Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421: 37–42.
  • Pearson, G.A., Lago‐Leston, A. & Mota, C. (2009). Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. Journal of Ecology, 97: 450–462.
  • Platt, T.G., Gallegos, C.L. & Harrison, W.G. (1980). Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38: 687–701.
  • Platt, T.G. & Jassby, A.D. (1976). The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. Journal of Phycology, 12: 421–430.
  • R Development Core Team. (2017). R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing, Vienna. Available at https://www.R-project.org/.
  • Ragazzola, F., Foster, L.C., Form, A.U., Büscher, J., Hansteen, T.H. & Fietzke, J. (2013). Phenotypic plasticity of coralline algae in a high CO2 world. Ecology and Evolution, 3: 3436–3446.
  • Ragazzola, F., Marchini, A., Adani, M., Bordone, A., Castelli, A., Cerrati, G., Kolzenburg, R., Langeneck, J., Di Marzo, C., Nannini, M., Raiteri, G., Romanelli, E., Santos, M., Vasapollo, C., Pipitone, C. and Lombardi, C. (2021). An intertidal life: combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community. Marine Environmental Research, 169: 105342.
  • Rothäusler, E., Rugiu, L. & Jormalainen, V. (2018). Forecast climate change conditions sustain growth and physiology but hamper reproduction in range-margin populations of a foundation rockweed species. Marine Environmental Research, 141, 205–213.
  • Sagarin, R.D. & Gaines, S.D. (2002). The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecology Letters, 5: 137–147.
  • Sagarin, R.D. & Gaines, S.D. (2006). Recent studies improve understanding of population dynamics across species ranges. Oikos, 115: 386–388.
  • Sagarin, R.D., Gaines, S.D. & Gaylord, B. (2006). Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends in Ecology and Evolution, 21: 524–530.
  • Schubert, N., Hofmann, L.C., Almeida Saá, A.C., Moreira, A.C., Arenhart, R.G., Fernandes, C.P., de Beer, D., Horta, P.A. & Silva, J. (2021). Calcification in free-living coralline algae is strongly influenced by morphology: implications for susceptibility to ocean acidification. Scientific Reports, 11: 1–14.
  • Smith, S.V. & Key, G.S. (1975). Carbon dioxide and metabolism in marine environments. Limnology and Oceanography, 20: 493–495.
  • Steneck, R.S. (1986). The ecology of coralline algal crusts: convergent patterns and adaptative strategies. Annual Review of Ecology, Evolution, and Systematics, 17: 273–303.
  • Tavares, A.I., Nicastro, K.R., Kolzenburg, R., Ragazzola, F., Jacinto, R. & Zardi, G.I. (2018). Isolation and characterisation of nine microsatellite markers for the red alga Corallina officinalis. Molecular Biology Reports, 45: 2791–2794.
  • Viejo, R.M., Martínez, B., Arrontes, J., Astudillo, C. & Hernández, L. (2011). Reproductive patterns in central and marginal populations of a large brown seaweed: drastic changes at the southern range limit. Ecography, 34: 75–84.
  • Whittaker, R.H. (1956). Vegetation of the Great Smoky Mountains. Ecological Monographs, 26: 1–80.
  • Williamson, C.J., Brodie, J., Goss, B., Yallop, M., Lee, S. & Perkins, R. (2014). Corallina and Ellisolandia (Corallinales, Rhodophyta) photophysiology over daylight tidal emersion: interactions with irradiance, temperature and carbonate chemistry, Marine Biology, 161: 2051–2068.
  • Williamson, C.J., Perkins, R., Voller, M., Yallop, M.L. & Brodie, J. (2017). The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta). Biogeosciences, 14: 4485–4498.
  • Wilson, S., Blake, C., Berges, J.A. & Maggs, C.A. (2004). Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biological Conservation, 120: 279–289.
  • Yesson, C., Jackson, A., Russell, S., Williamson, C.J. & Brodie, J. (2018). SNPs reveal geographical population structure of Corallina officinalis (Corallinaceae, Rhodophyta). European Journal of Phycology, 53: 180–188.