1,711
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Trait trade-offs in phagotrophic microalgae: the mixoplankton conundrum

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 51-70 | Received 02 Nov 2022, Accepted 13 May 2023, Published online: 20 Jun 2023

References

  • Aaronson, S., DeAngelis, B., Frank, O. & Baker, H. (1971). Secretion of vitamins and amino acids into the environment by Ochromonas danica. Journal of Phycology, 7: 215–218.
  • Abreu, A.P., Morais, R.C., Teixeira, J.A. & Nunes, J. (2022). A comparison between microalgal autotrophic growth and metabolic accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes. Renewable and Sustainable Energy Review, 159: 112247.
  • Adolf, J.E., Stoecker, D.K. & Harding, L.W., Jr. (2003). Autotrophic growth and photoacclimation in Karlodi-nium micrum (Dinophyceae) and Storeatula major (Cryptophyceae). Journal of Phycology, 39: 1101–1108. doi:10.1111/j.0022-3646.2003.02-086.x
  • Adolf, J.E., Stoecker, D.K. & Harding, L.W., Jr. (2006). The balance of autotrophy and heterotrophy during mixotrophic growth of Karlodinium micrum (Dinophyceae). Journal of Plankton Research, 28: 737–751. doi:10.1093/plankt/fbl007
  • Andersen, K.H., Berge, T., Gonçalves, R.J., Hartvig, M., Heuschele, J., Hylander, S., Jacobsen, N.S., Lindemann, C., Martens, E.A., Neuheimer, A.B. & Olsson, K. (2016). Characteristic sizes of life in the oceans, from bacteria to whales. Annual Review of Marine Science, 8: 217–241. doi:10.1146/annurev-marine-122414-034144
  • Anderson, O.R. (1993). The trophic role of planktonic Foraminifera and Radiolaria. Marine Microbial Food Webs, 7: 31–51.
  • Anschütz, A.A. & Flynn, K.J. (2020). Niche separation between different functional types of mixoplankton: results from NPZ-style N-based model simulations. Marine Biology, 167: 1–21. doi:10.1007/s00227-019-3612-3
  • Anschütz, A.A., Flynn, K.J. & Mitra, A. (2022). Acquired phototrophy and its implications for bloom dynamics of the Teleaulax-Mesodinium-Dinophysis-complex. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.799358
  • Antia, N.J., Harrison, P.J. & Oliveira, L. (1981). The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia, 30: 1–89. doi:10.2216/i0031-8884-30-1-1.1
  • Avrahami, Y. & Frada, M.J. (2020). Detection of phagotrophy in the marine phytoplankton group of the coccolithophores (Calcihaptophycidae, Haptophyta) during nutrient‐replete and phosphate‐limited growth. Journal of Phycology, 56: 1103–1108. doi:10.1111/jpy.12997
  • Behrenfeld, M.J., Halsey, K.H., Boss, E., Karp-Boss, L., Milligan, A.J. & Peers, G. (2021). Thoughts on the evolution and ecological niche of diatoms. Ecological Monographs, 91: e01457. doi:10.1002/ecm.1457
  • Biddanda, B. & Benner, R. (1997). Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography, 42: 506–518. doi:10.4319/lo.1997.42.3.0506
  • Blossom, H.E., Bædkel, T.D., Tillmann, U. & Hansen, P.J. (2017). A search for mixotrophy and mucus trap production in Alexandrium spp. and the dynamics of mucus trap formation in Alexandrium pseudogonyaulax. Harmful Algae, 64: 51–62. doi:10.1016/j.hal.2017.03.004
  • Blossom, H.E. & Hansen, P.J. (2021). The loss of mixotrophy in Alexandrium pseudogonyaulax: implications for trade‐offs between toxicity, mucus trap production, and phagotrophy. Limnology and Oceanography, 66: 528–542. doi:10.1002/lno.11621
  • Bremer, N., Tria, F.D., Skejo, J., Garg, S.G. & Martin, W.F. (2022). Ancestral state reconstructions trace mitochondria but not phagocytosis to the last eukaryotic common ancestor. Genome Biology and Evolution, 14: evac079. doi:10.1093/gbe/evac079
  • Burkholder, J.M., Glibert, P.M. & Skelton, H.M. (2008). Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae, 8: 77–93. doi:10.1016/j.hal.2008.08.010
  • Cadier, M., Hansen, A.N., Andersen, K.H. & Visser, A.W. (2020). Competition between vacuolated and mixotrophic unicellular plankton. Journal of Plankton Research, 42: 425–439. doi:10.1093/plankt/fbaa025
  • Caron, D.A. (2000). Symbiosis and Mixotrophy Among Pelagic Microorganisms. In Microbial Ecology of the Oceans ( Kirchman, D.L. ed.), 495–523. Wiley-Liss, Inc., New York, USA.
  • Caron, D.A. (2016). The rise of Rhizaria. Nature, 532: 444–445. doi:10.1038/nature17892
  • Caron, D.A., Porter, K.G. & Sanders, R.W. (1990). Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnology and Oceanography, 35: 433–443. doi:10.4319/lo.1990.35.2.0433
  • Caron, D.A. & Swanberg, N.R. (1990). The ecology of planktonic sarcodines. Aquatic Science, 3: 147–180.
  • Cupo, A., Landi, S., Morra, S., Nuzzo, G., Gallo, C., Manzo, E., Fontana, A. & d’Ippolito, G. (2021). Autotrophic vs. heterotrophic cultivation of the marine diatom Cyclotella cryptica for EPA production. Marine Drugs, 19: 355. doi:10.3390/md19070355
  • de Castro, F., Gaedke, U. & Boenigk, J. (2009). Reverse evolution: driving forces behind the loss of acquired photosynthetic traits. Plos One, 4: e8465. doi:10.1371/journal.pone.0008465
  • Decelle, J., Probert, I., Bittner, L., Desdevises, Y., Colin, S., de Vargas, C., Galí, M., Simó, R. & Not, F. (2012). An original mode of symbiosis in open ocean plankton. Proceedings of the National Academy of Sciences, 109: 18000–18005. doi:10.1073/pnas.1212303109
  • Demura, M., Noël, M.H., Kasai, F., Watanabe, M.M. & Kawachi, M. (2009). Taxonomic revision of Chattonella antiqua, C. marina and C. ovata (Raphidophyceae) based on their morphological characteristics and genetic diversity. Phycologia, 48: 518–535. doi:10.2216/08-98.1
  • Dolan, J.R. & Pérez, M.T. (2000). Costs, benefits and characteristics of mixotrophy in marine oligotrichs. Freshwater Biology, 45: 227–238. doi:10.1046/j.1365-2427.2000.00659.x
  • Droop, M.R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the UK, 54: 825–855. doi:10.1017/S002531540005760X
  • Faure, E., Not, F., Benoiston, A.S., Labadie, K., Bittner, L. & Ayata, S.D. (2019). Mixotrophic protists display contrasted biogeographies in the global ocean. ISME Journal, 13: 1072–1083. doi:10.1038/s41396-018-0340-5
  • Fenchel, T. & Finlay, B.J. (1983). Respiration rates in heterotrophic, free-living protozoa. Microbial Ecology, 9: 99–122.
  • Ferreira, G.D., Grigoropoulou, A., Saiz, E. & Calbet, A. (2022). The effect of short-term temperature exposure on vital physiological processes of mixoplankton and protozooplankton. Marine Environmental Research, 179: 105693. doi:10.1016/j.marenvres.2022.105693
  • Finkel, Z.V., Beardall, J., Flynn, K.J., Quigg, A., Rees, T.A.V. & Raven, J.A. (2010). Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research, 32: 119–137. doi:10.1093/plankt/fbp098
  • Flynn, K.J. (1990). Composition of intracellular and extracellular pools of amino acids, and amino acid utilization of microalgae of different sizes. Journal of Experimental Marine Biology and Ecology, 139: 151–166. doi:10.1016/0022-0981(90)90143-Z
  • Flynn, K.J. (2008). Attack is not the best form of defense; lessons from harmful algal bloom dynamics. Harmful Algae, 8: 129–139. doi:10.1016/j.hal.2008.08.007
  • Flynn, K.J. & Berry, L.S. (1999). The loss of organic nitrogen during marine primary production may be overestimated significantly when estimated using 15N substrates. Proceedings of the Royal Society B: Biological Sciences, 266: 641–647. doi:10.1098/rspb.1999.0684
  • Flynn, K.J. & Butler, I. (1986). Nitrogen sources for the growth of marine microalgae; role of dissolved free amino acids. Marine Ecology Progress Series, 34: 281–304. doi:10.3354/meps034281
  • Flynn, K.J., Clark, D.R. & Wheeler, G. (2016). The role of coccolithophore calcification in bioengineering their environment. Proceedings of the Royal Society B: Biological Sciences, 283: 20161099. doi:10.1098/rspb.2016.1099
  • Flynn, K.J., Clark, D.R. & Xue, Y. (2008). Modelling the release of dissolved organic matter by phytoplankton. Journal of Phycology, 44: 1171–1187. doi:10.1111/j.1529-8817.2008.00562.x
  • Flynn, K.J. & Davidson, K. (1993). Predator-prey interactions between Isochrysis galbana and Oxyrrhis marina. II. Release of non-protein amines and faeces during predation of Isochrysis. Journal of Plankton Research, 15: 893–905. doi:10.1093/plankt/15.8.893
  • Flynn, K.J., Davidson, K. & Cunningham, A. (1996). Prey selection and rejection by a microflagellate; implications for the study and operation of microbial food webs. Journal of Experimental Marine Biology and Ecology, 196: 357–372. doi:10.1016/0022-0981(95)00140-9
  • Flynn, K.J. & Hansen, P.J. (2013). Cutting the canopy to defeat the “selfish gene”; conflicting selection pressures for the integration of phototrophy in mixotrophic protists. Protist, 164: 811–823. doi:10.1016/j.protis.2013.09.002
  • Flynn, K.J. & Hipkin, C.R. (1999). Interactions between iron, light, ammonium, and nitrate: insights from the construction of a dynamic model of algal physiology. Journal of Phycology, 35: 1171–1190. doi:10.1046/j.1529-8817.1999.3561171.x
  • Flynn, K.J. & Mitra, A. (2009). Building the “perfect beast”: modelling mixotrophic plankton. Journal of Plankton Research, 31: 965–992. doi:10.1093/plankt/fbp044
  • Flynn, K.J., Mitra, A., Anestis, K., Anschütz, A.A., Calbet, A., Ferreira, G.D., Gypens, N., Hansen, P.J., John, U., Martin, J.L. & Mansour, J.S. (2019). Mixotrophic protists and a new paradigm for marine ecology where does plankton research go now? Journal of Plankton Research, 41: 375–391.
  • Flynn, K.J., Mitra, A., Wilson, W.H., Kimmance, S.A., Clark, D.R., Pelusi, A. & Polimene, L. (2022). “Boom-and-busted-dynamics” of phytoplankton-virus interactions explain the paradox of the plankton. New Phytologist, 234: 990–1002. doi:10.1111/nph.18042
  • Flynn, K.J. & Skibinski, D.O.F. (2020). Exploring evolution of maximum growth rates in plankton. Journal of Plankton Research, 42: 497–513. doi:10.1093/plankt/fbaa038
  • Flynn, K.J., Skibinski, D.O.F. & Lindemann, C. (2018). Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics. Plos Computational Biology, 14: e1006118. doi:10.1371/journal.pcbi.1006118
  • Flynn, K.J., St. John, M., Raven, J.A., Skibinski, D.O.F., Allen, J.I., Mitra, A. & Hofmann, E.E. (2015). Acclimation, adaptation, traits and trade-offs in plankton functional type models: reconciling terminology for biology and modelling. Journal of Plankton Research, 37: 683–691. doi:10.1093/plankt/fbv036
  • Flynn, K.J., Stoecker, D.K., Mitra, A., Raven, J.A., Glibert, P.M., Hansen, P.J., Granéli, E. & Burkholder, J.M. (2013). Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. Journal of Plankton Research, 35: 3–11. doi:10.1093/plankt/fbs062
  • Garland, T. (2014). Trade-offs. Current Biology, 24: R60–R61. doi:10.1016/j.cub.2013.11.036
  • Gavelis, G.S., Wakeman, K.C., Tillmann, U., Ripken, C., Mitarai, S., Herranz, M., Özbek, S., Holstein, T., Keeling, P.J. & Leander, B.S. (2017). Microbial arms race: ballistic “nematocysts” in dinoflagellates represent a new extreme in organelle complexity. Science Advances, 3: e.1602552. doi:10.1126/sciadv.1602552
  • Glibert, P.M. (2016). Margalef revisited: a new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae, 55: 25–30. doi:10.1016/j.hal.2016.01.008
  • Glibert, P.M. & Mitra, A. (2022). From webs, loops, shunts, and pumps to microbial multitasking: evolving concepts of marine microbial ecology, the mixoplankton paradigm, and implications for a future ocean. Limnology and Oceanography, 67: 585–597. doi:10.1002/lno.12018
  • Glibert, P.M., Wilkerson, F.P., Dugdale, R.C., Raven, J.A., Dupont, C.L., Leavitt, P.R., Parker, A.E., Burkholder, J.M. & Kana, T.M. (2016). Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen‐enriched conditions. Limnology and Oceanography, 61: 165–197. doi:10.1002/lno.10203
  • Gomes, H.D.R., Goes, J.I., Matondar, S.G.P., Buskey, E.J., Basu, S., Parab, S. & Thoppil, P. (2014). Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature Communications, 5: 1–8.
  • Gomes, H.D.R., McKee, K., Mile, A., Thandapu, S., Al-Hashmi, K., Jiang, X. & Goes, J.I. (2018). Influence of light availability and prey type on the growth and photo-physiological rates of the mixotroph Noctiluca scintillans. Frontiers in Marine Science, 5: 374. doi:10.3389/fmars.2018.00374
  • González, J.M. & Suttle, C.A. (1993). Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Marine Ecology Progress Series, 94: 1–10. doi:10.3354/meps094001
  • Granéli, E., Evardsen, B., Roelke, D.L. & Hagström, J.A. (2012). The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae, 14: 260–270. doi:10.1016/j.hal.2011.10.024
  • Granéli, E. & Flynn, K.J. (2006). Chemical and physical factors influencing toxin production. In Ecology of Harmful Algae, ( Granéli, E. and Turner, J.T., eds.), Vol. 189, 229–241. Ecological Studies, Springer-Verlag, Berlin.
  • Hammer, A.C. & Pitchford, J.W. (2005). The role of mixotrophy in plankton bloom dynamics, and the consequences for productivity. ICES Journal of Marine Science, 62: 833–840. doi:10.1016/j.icesjms.2005.03.001
  • Hansen, P.J. (2002). The effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquatic Microbial Ecology, 28: 279–288. doi:10.3354/ame028279
  • Hansen, P.J., Skovgaard, A., Glud, R.N. & Stoecker, D.K. (2000). Physiology of the mixotrophic dinoflagellate Fragilidium subglobosum. II. Effects of time scale and prey concentration on photosynthetic performance. Marine Ecology Progress Series, 201: 137–146. doi:10.3354/meps201137
  • Hartmann, M., Grob, C., Tarran, G.A., Martin, A.P., Burkill, P.H., Scanlan, D.J. & Zubkov, M.V. (2012). Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings of the National Academy of Sciences, 109: 5756–5760. doi:10.1073/pnas.1118179109
  • Hausmann, K. (2002). Food acquisition, food ingestion and food digestion by protists. Japanese Journal of Protozoology, 35: 85–95.
  • Hofmann, A.F., Middleburg, J.J., Soetaert, K., Wolf-Gladrow, D.A. & Meysman, K.J.R. (2010). Proto cycling, buffering, and reaction stoichiometry in natural waters. Marine Chemistry, 121: 246–255. doi:10.1016/j.marchem.2010.05.004
  • Jeong, H.J., Park, J.Y., Nho, J.H., Park, M.O., Ha, J.H., Seong, K.A., Jeng, C., Seong, C.N., Lee, K.Y. & Yih, W.H. (2005). Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquatic Microbial Ecology, 41: 131–143. doi:10.3354/ame041131
  • Jeong, H.J., Yoo, Y.D., Kim, J.S., Seong, K.A., Kang, N.S. & Kim, T.H. (2010). Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal, 45: 65–91. doi:10.1007/s12601-010-0007-2
  • Jiang, H. & Johnson, M.D. (2017). Jumping and overcoming diffusion limitation of nutrient uptake in the photosynthetic ciliate Mesodinium rubrum. Limnology and Oceanography, 62: 421–436. doi:10.1002/lno.10432
  • Jiang, H., Kulis, D.M., Brosnahan, M.L. & Anderson, D.M. (2018). Behavioral and mechanistic characteristics of the predator-prey interaction between the dinoflagellate Dinophysis acuminata and the ciliate Mesodinum rubrum. Harmful Algae, 77: 43–54. doi:10.1016/j.hal.2018.06.007
  • John, E.H. & Flynn, K.J. (2002). Modelling changes in paralytic shellfish toxin content of dinoflagellates in response to nitrogen and phosphorus supply. Marine Ecology Progress Series, 225: 147–160. doi:10.3354/meps225147
  • Johnson, M.D. (2011). The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosynthesis Research, 107: 117–132. doi:10.1007/s11120-010-9546-8
  • Jonsson, P.R. & Tiselius, P. (1990). Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Marine Ecology Progress Series, 60: 35–44. doi:10.3354/meps060035
  • Kamennaya, N.A., Kennaway, G., Fucha, B.M. & Zubkov, M.V. (2018). “Pomacytosis” - Semi-extracellular phagocytosis of cyanobacteria by the smallest marine algae. Plos Biology, 16: e2003502. doi:10.1371/journal.pbio.2003502
  • Kazania, E., Sutak, R., Paz-Yepes, J., Dorrell, R.G., Viera, F.R.J., Mach, J., Morrissey, J., Leon, S., Lam, F., Pelletier, E. & Camadro, J.M. (2018). Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Science Advances, 4: eaar4536. doi:10.1126/sciadv.aar4536
  • Keeling, P.J., Burki, F., Wilcox, H.M., Allam, B., Allen, E.E., Amaral-Zettler, L.A., Armbrust, E.V., Archibald, J.M., Bharti, A.K., Bell, C.J. & Beszteri, B. (2014). The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. Plos Biology, 12: e.1001889. doi:10.1371/journal.pbio.1001889
  • Kemp, A.E.S. & Villareal, T.A. (2013). High diatom production is stratified waters – potential negative feedback to global warming. Progress in Oceanography, 119: 4–23. doi:10.1016/j.pocean.2013.06.004
  • Kemp, A.E. & Villareal, T.A. (2018). The case of the diatoms and the muddled mandalas: time to recognize diatom adaptations to stratified waters. Progress in Oceanography, 167: 138–149. doi:10.1016/j.pocean.2018.08.002
  • Kim, G.H., Han, J.H., Kim, B., Han, J.W., Nam, S.W., Shin, W., Park, J.W. & Yih, W. (2016). Cryptophyte gene regulation in the kleptoplastidic, karyokleptic ciliate Mesodinium rubrum. Harmful Algae, 52: 23–33. doi:10.1016/j.hal.2015.12.004
  • Kim, M., Nam, S.W., Shin, W., Coats, D.W. & Park, M.G. (2012). Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. Journal of Phycology, 48: 569–579. doi:10.1111/j.1529-8817.2012.01150.x
  • Kiørboe, T. (2011). How zooplankton feed: mechanisms, traits and trade-offs. Biological Reviews of the Cambridge Philosophical Society, 86: 311–339. doi:10.1111/j.1469-185X.2010.00148.x
  • Kiørboe, T., Visser, A. & Andersen, K.H. (2018). A trait-based approach to ocean ecology. ICES Journal of Marine Science, 75(6): 1849–1863. doi:10.1093/icesjms/fsy090
  • Koppelle, S., López-Escardó, D., Brussaard, C.P., Huisman, J., Philippart, C.J., Massana, R. & Wilken, S. (2022). Mixotrophy in the bloom-forming genus Phaeocystis and other haptophytes. Harmful Algae, 117: 102292. doi:10.1016/j.hal.2022.102292
  • Larsen, J. (1988). An ultrastructural study of Amphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia, 27: 366–377. doi:10.2216/i0031-8884-27-3-366.1
  • Larsson, M.E., Bramucci, A.R., Collins, S., Hallegraeff, G., Kahlke, T., Raina, J.-B., Seymour, J.R. & Doblin, M.A. (2022). Mucospheres produced by a mixotrophic protist impact ocean carbon cycling. Nature Communications, 13: 1–15. doi:10.1038/s41467-022-28867-8
  • Lee, K.H., Jeong, H.J., Jang, T.Y., Lim, A.S., Kang, N.S., Kim, J.H., Kim, K.Y., Park, K.T. & Lee, K. (2014). Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. Journal of Experimental Marine Biology and Ecology, 459: 114–125. doi:10.1016/j.jembe.2014.05.011
  • Lee, J.J., Lanners, E. & Ter Kuile, B. (1988). The retention of chloroplasts by the foraminifer Elphidiurn crispum. Symbiosis, 5: 545–560.
  • Leles, S.G., Bruggeman, J., Polimene, L., Blackford, J., Flynn, K.J. & Mitra, A. (2021). Differences in physiology explain succession of mixoplankton functional types and affect carbon fluxes in temperate seas. Progress in Oceanography, 190: 102481. doi:10.1016/j.pocean.2020.102481
  • Leles, S.G., Mitra, A., Flynn, K.J., Stoecker, D.K., Hansen, P.J., Calbet, A., McManus, G.B., Sanders, R.W., Caron, D.A., Not, F. & Hallegraeff, G.M. (2017). Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proceedings of the Royal Society B: Biological Sciences, 284: 20170664. doi:10.1098/rspb.2017.0664
  • Leles, S.G., Mitra, A., Flynn, K.J., Tillmann, U., Stoecker, D.K., Jeong, H.J., Burkholder, J., Hansen, P.J., Caron, D.A., Glibert, P.M. & Hallegraeff, G. (2019). Sampling bias misrepresents the biogeographic significance of constitutive mixotrophs across global oceans. Global Ecology and Biogeography, 28: 418–428. doi:10.1111/geb.12853
  • Lenski, R.E., Mongold, J.A., Sniegowski, P.D., Travisano, M., Vasi, F., Gerrish, P.J. & Schmidt, T.M. (1998). Evolution of competitive fitness in experimental populations of E. coli: What Makes One Genotype A Better Competitor Than Another? Antonie Van Leeuwenhoek, 73: 35–47.
  • Lewin, J. & Hellebust, J.A. (1970). Heterotrophic nutrition of the marine pennate diatom Cylindrotheca fusiformis. Canadian Journal of Microbiology, 16: 1123–1129. doi:10.1139/m70-188
  • Li, M., Chen, Y., Zhang, F., Song, Y., Glibert, P.M. & Stoecker, D.K. (2022). A three-dimensional mixotrophic model of Karlodinium veneficum blooms for a eutrophic estuary. Harmful Algae, 113: 102203. doi:10.1016/j.hal.2022.102203
  • Lie, A.A.Y., Liu, Z.F., Terrado, R., Tatters, A.O., Heidelberg, K.B. & Caron, D.A. (2018). A tale of two mixotrophic chrysophytes: insights into the metabolisms of two Ochromonas species (Chrysophyceae) through a comparison of gene expression. Plos One, 13: e0192439. doi:10.1371/journal.pone.0192439
  • Li, Z., Lan, T., Zhang, J., Gao, K., Beardall, J. & Wu, Y. (2021). Nitrogen limitation decreases the repair capacity and enhances photoinhibition of photosystem II in a diatom. Photochemistry and Photobiology, 97: 745–752. doi:10.1111/php.13386
  • Li, A., Stoecker, D.K. & Adolf, J.E. (1999). Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquatic Microbial Ecology, 19: 163–176. doi:10.3354/ame019163
  • Litchman, E., Edwards, K.F. & Boyd, P.W. (2021). Toward trait-based food webs: universal traits and trait matching in planktonic predator–prey and host–parasite relationships. Limnology and Oceanography, 66: 3857–3872. doi:10.1002/lno.11924
  • Litchman, E. & Klausmeier, C.A. (2008). Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics, 39: 615–639. doi:10.1146/annurev.ecolsys.39.110707.173549
  • Litchman, E., Ohman, M.D. & Kiørboe, T. (2013). Trait-based approaches to zooplankton communities. Journal of Plankton Research, 35: 473–484. doi:10.1093/plankt/fbt019
  • Mansour, J.S. & Anestis, K. (2021). Eco-evolutionary perspectives on mixoplankton. Frontiers in Marine Science, 8: 666160. doi:10.3389/fmars.2021.666160
  • Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologis Acta, 1: 493–509.
  • Martel, C.M. (2006). Prey location, recognition and ingestion by the phagotrophic marine dinoflagellate Oxyrrhis marina. Journal of Experimental Marine Biology and Ecology, 335: 210–220. doi:10.1016/j.jembe.2006.03.006
  • McCue, M.D. (2006). Specific dynamic action: a century of investigation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 144: 381–394. doi:10.1016/j.cbpa.2006.03.011
  • McKie-Krisberg, Z.M., Gast, R.J. & Sanders, R.W. (2015). Physiological responses of three species of Antarctic mixotrophic phytoflagellates to changes in light and dissolved nutrients. Microbial Ecology, 70: 21–29. doi:10.1007/s00248-014-0543-x
  • McManus, G.B., Liu, W., Cole, R.A., Biemesderfer, D. & Mydosh, J.L. (2018). Strombidium rassoulzadegani: a model species for chloroplast retention in Oligotrich ciliates. Frontiers in Marine Science, 5: 205. doi:10.3389/fmars.2018.00205
  • McManus, G.B., Schoener, D.M. & Haberlandt, K. (2012). Chloroplast symbiosis in a marine ciliate: ecophysiology and the risks and rewards of hosting foreign organelles. Frontiers in Microbiology, 3: 321. doi:10.3389/fmicb.2012.00321
  • Meyer, N., Rydzyk, A. & Pohnert, G. (2022). Pronounced uptake and metabolism of organic substrates by diatoms revealed by pulse-labeling metabolomics. Frontiers in Marine Science, 9. doi:10.3389/fmars.2022.821167
  • Millette, N.C., Pierson, J.J., Aceves, A. & Stoecker, D.K. (2017). Mixotrophy in Heterocapsa rotundata: a mechanism for dominating the winter phytoplankton. Limnology and Oceanography, 62: 836–845. doi:10.1002/lno.10470
  • Mitra, A., Caron, D.A., Faure, E., Flynn, K.J., Leles, S.G., Hansen, P.J., McManus, G.B., Not, F., Gomes, H.R., Santoferrara, L., Stoecker, D.K. & Tillmann, U. (2023). The mixoplankton database – diversity of photo-phago-trophic plankton in form, function and distribution across the global ocean. Journal or Eukaryote Microbiology: e12972. doi:10.1111/jeu.12972
  • Mitra, A. & Flynn, K.J. (2007). Importance of interactions between food quality, quantity, and gut transit time on consumer feeding, growth, and trophic dynamics. The American Naturalist, 169: 632–646. doi:10.1086/513187
  • Mitra, A. & Flynn, K.J. (2010). Modelling mixotrophy in harmful algal blooms: more or less the sum of the parts? Journal of Marine Systems, 83: 158–169. doi:10.1016/j.jmarsys.2010.04.006
  • Mitra, A. & Flynn, K.J. (2023). Low rates of bacterivory enhances phototrophy and competitive advantage for mixoplankton growing in oligotrophic waters. Scientific Reports, 13: 6900. doi:10.1038/s41598-023-33962-x
  • Mitra, A., Flynn, K.J., Burkholder, J.M., Berge, T., Calbet, A., Raven, J.A., Granéli, E., Glibert, P.M., Hansen, P.J., Stoecker, D.K. & Thingstad, F. (2014). The role of mixotrophic protists in the biological carbon pump. Biogeosciences, 11: 995–1005. doi:10.5194/bg-11-995-2014
  • Mitra, A., Flynn, K.J., Tillmann, U., Raven, J.A., Caron, D., Stoecker, D.K., Not, F., Hansen, P.J., Hallegraeff, G., Sanders, R. & Wilken, S. (2016). Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition; incorporation of diverse mixotrophic strategies. Protist, 167: 106–120. doi:10.1016/j.protis.2016.01.003
  • Moeller, H.V. & Johnson, M.D. (2017). Preferential plastid retention by the acquired phototroph Mesodinium chamaeleon. Eukaryotic Microbiology, 65: 148–158. doi:10.1111/jeu.12446
  • Nagai, S., Nitshitani, G., Tomaru, Y., Sakiyama, S. & Kamiyama, T. (2008). Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. Journal of Phycology, 44: 909–922. doi:10.1111/j.1529-8817.2008.00544.x
  • Nelson, D.M. & Brand, L.E. (1979). Cell division periodicity in 13 species of marine phytoplankton on a light: darkcycle. Journal of Phycology, 15: 67–75. doi:10.1111/j.1529-8817.1979.tb02964.x
  • Olli, K. & Teeveer, K. (2007). Self-toxicity of Prymnesium parvum (Prymnesiophyceae). Phycologia, 46: 109–112. doi:10.2216/06-32.1
  • Öpik, H. & Flynn, K.J. (1989). The digestive process of the dinoflagellate, Oxyrrhis marina Dujardin, feeding on the chlorophyte, Dunaliella primolecta Butcher: a combined study of ultrastructure and free amino acids. New Phytologist, 113: 143–151. doi:10.1111/j.1469-8137.1989.tb04700.x
  • Pančić, M. & Kiørboe, T. (2018). Phytoplankton defence mechanisms: traits and trade-offs. Biological Reviews, 93: 1269–1303. doi:10.1111/brv.12395
  • Park, M.G., Kim, S., Kim, H.S., Myung, G., Kang, Y.G. & Yih, W. (2006). First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquatic Microbial Ecology, 45: 101–106. doi:10.3354/ame045101
  • Pelegri, S.P., Christaki, U., Doland, J. & Rassoulzadegan, F. (1999). Particulate and dissolved organic carbon production by the heterotrophic nanoflagellate Pteridomonas danica Patterson and Fenchel. Microbial Ecology, 37: 276–284. doi:10.1007/s002489900150
  • Ponce-Toledo, R.I., Deschamps, P., López-García, P., Zivanovic, Y., Benzenava, K. & Moreira, D. (2017). An early-branching freshwater cyanobacterium at the origin of plastids. Current Biology, 27: 368–391. doi:10.1016/j.cub.2016.11.056
  • Raven, J.A. (1997). Phagotrophy in phototrophs. Limnology and Oceanography, 42: 198–205. doi:10.4319/lo.1997.42.1.0198
  • Raven, J.A. & Beardall, J. (2022). Evolution of phytoplankton in relation to their physiological traits. Journal of Marine Science and Engineering, 10: 194. doi:10.3390/jmse10020194
  • Raven, J.A., Beardall, J., Flynn, K.J. & Maberly, S.C. (2009). Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. Journal of Experimental Botany, 60: 3975–3987. doi:10.1093/jxb/erp282
  • Raven, J.A., Suggett, D.J. & Giordano, M. (2020). Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. Journal of Phycology, 56: 1377–1397. doi:10.1111/jpy.13050
  • Richardson, K., Beardall, J. & Raven, J.A. (1983). Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytologist, 93: 157–191. doi:10.1111/j.1469-8137.1983.tb03422.x
  • Ross, O.N. (2006). Particles in motion: how turbulence affects plankton sedimentation from an oceanic mixed layer. Geophysical Research Letters, 33: L0609. doi:10.1029/2006GL026352
  • Rottberger, J., Gruber, A., Boenigk, J. & Kroth, P.G. (2013). Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquatic Microbial Ecology, 71: 179–191. doi:10.3354/ame01662
  • Sánchez-Baracaldo, P., Raven, J.A., Pisari, D. & Knoll, A.H. (2017). Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences, 114: E7737–E7745. doi:10.1073/pnas.1620089114
  • Sato, N. (2020). Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event? Journal of Plankton Research, 133: 15–33. doi:10.1007/s10265-019-01157-z
  • Schmid, A.M.M. (2003a). Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. “Scattered ct nucleoid” explained: DAPI-DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. Journal of Phycology, 39: 122–138. doi:10.1046/j.1529-8817.2003.02084.x
  • Schmid, A.M.M. (2003b). Endobacteria in the diatom Pinnularia (Bacillariophyceae). II. Host cell cycle-dependent translocation and transient chloroplast scars. Journal of Phycology, 39: 139–153. doi:10.1046/j.1529-8817.2003.02085.x
  • Schoener, D.M. & McManus, G.B. (2012). Plastid retention, use and replacement in a kleptoplastidic ciliate. Aquatic Microbial Ecology, 67: 177–187. doi:10.3354/ame01601
  • Schoener, D.M. & McManus, G.B. (2017). Growth, grazing, and inorganic C and N uptake in a mixotrophic and a heterotrophic ciliate. Journal of Plankton Research, 39: 379–391. doi:10.1093/plankt/fbx014
  • Serra-Pompei, C., Soudijn, F., Visser, A.W., Kiørboe, T. & Andersen, K.H. (2020). A general size- and trait-based model of plankton communities. Progress in Oceanography, 189: 102473. doi:10.1016/j.pocean.2020.102473
  • Sikes, C.S. & Wilbur, K.M. (1982). Functions of coccolith formation. Limnology and Oceanography, 22: 18–26. doi:10.4319/lo.1982.27.1.0018
  • Smalley, G.W. & Coats, D.W. (2002). Ecology of the red‐tide dinoflagellate Ceratium furca: distribution, mixotrophy, and grazing impact on ciliate populations of Chesapeake Bay. Journal of Eukaryotic Microbiology, 49: 63–73. doi:10.1111/j.1550-7408.2002.tb00343.x
  • Smriga, S., Fernandez, V.I., Mitchell, J.G. & Stocker, R. (2016). Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proceedings of the National Academy of Sciences, 113: 1576–1581. doi:10.1073/pnas.1512307113
  • Snell‐Rood, E., Cothran, R., Espeset, A., Jeyasingh, P., Hobbie, S. & Morehouse, N.I. (2015). Life‐history evolution in the anthropocene: effects of increasing nutrients on traits and trade‐offs. Evolutionary Applications, 8: 635–649. doi:10.1111/eva.12272
  • Sommer, U., Charalampous, E., Genitsaris, S. & Moustaka-Gouni, M. (2017). Benefits, costs and taxonomic distribution of marine phytoplankton body size. Journal of Plankton Research, 39: 494–508.
  • Spero, H.J. (1985). Chemosensory capabilities in the phagotrophic dinoflagellate Gymnodinium fungiforme. Journal of Phycology, 21: 181–184. doi:10.1111/j.0022-3646.1985.00181.x
  • Stearns, S.C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3: 259–268. doi:10.2307/2389364
  • Stoecker, D.K. (1999). Mixotrophy among dinoflagellates. Journal of Eukaryotic Microbiology, 46: 397–401. doi:10.1111/j.1550-7408.1999.tb04619.x
  • Stoecker, D.K., Hansen, P.J., Caron, D.A. & Mitra, A. (2017). Mixotrophy in the marine plankton. Annual Reviews in Marine Science, 9: 311–335. doi:10.1146/annurev-marine-010816-060617
  • Stoecker, D.K., Johnson, M.D., de Vargas, C. & Not, F. (2009). Acquired phototrophy in aquatic protists. Aquatic Microbial Ecology, 57: 279–310. doi:10.3354/ame01340
  • Stoecker, D.K. & Silver, M.W. (1990). Replacement and aging of chloroplasts in Strombidium capitatum (Ciliata, Oligotrichida). Marine Biology, 107: 491–502. doi:10.1007/BF01313434
  • Stoecker, D.K., Silver, M.W., Michaels, A.E. & Davis, L.H. (1988). Obligate mixotrophy in Laboea strobila, a ciliate which retains chloroplasts. Marine Biology, 99: 415–423. doi:10.1007/BF02112135
  • Strom, S.L., Benner, R., Ziegler, S. & Dagg, M.J. (2003). Plankton grazers are potentially important source of marine dissolved organic carbon. Limnology and Oceanography, 42: 1364–1374. doi:10.4319/lo.1997.42.6.1364
  • Thingstad, T.F., Havskum, H., Garde, K. & Riemann, B. (1996). On the strategy of “eating your competitor”: a mathematical analysis of algal mixotrophy. Ecology, 77: 2108–2118. doi:10.2307/2265705
  • Thompson, P.A., Levessaur, M.E. & Harrison, P.J. (1989). Light-limited growth on ammonium vs nitrate: what is the advantage for marine phytoplankton? Limnology and Oceanography, 34: 1014–1024. doi:10.4319/lo.1989.34.6.1014
  • Tillmann, U. (1998). Phagotrophy by a plastidic haptophyte Prymnesium patelliferum. Aquatic Microbial Ecology, 14: 155–160. doi:10.3354/ame014155
  • Tillmann, U. (2003). Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquatic Microbial Ecology, 32: 73–84. doi:10.3354/ame032073
  • Tittel, J., Bissinger, V., Zippel, B., Gaedke, U., Bell, E., Lorke, A. & Kamjunke, N. (2003). Mixotrophs combine resource use to outcompete specialists: implications for aquatic food webs. Proceedings of the National Academy of Science, 100: 12776–12781. doi:10.1073/pnas.2130696100
  • Troost, T.A., Kooi, B.W. & Kooijman, S.A. (2005). Ecological specialization of mixotrophic plankton in a mixed water column. The American Naturalist, 166: E45–E61. doi:10.1086/432038
  • Tuo, S.-H., Mulholland, M.R., Chen, Y.-L.-L., Chappell, R.D. & Chen, H.-Y. (2021). Patterns in Rhizosolenia- and Gionardia-associated Richelia abundances in the tropical marginal seas of the western North Pacific. Journal of Plankton Research, 43: 328–352. doi:10.1093/plankt/fbab022
  • Unrein, F., Gasol, J.M., Not, F., Forn, I. & Massana, R. (2014). Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME Journal, 8: 164–176. doi:10.1038/ismej.2013.132
  • Verity, P.G. (1991). Feeding in planktonic protozoans: evidence for non-random acquisition of prey. Journal of Eukaryote Microbiology, 38: 69–76.
  • Visintini, N., Martiny, A.C. & Flombaum, P. (2021). Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean. Limnology and Oceanography Letters, 6: 207–215. doi:10.1002/lol2.10188
  • Ward, B.A., Dutkiewicz, S., Barton, A.D. & Follows, M.J. (2011). Biophysical aspects of resource acquisition and competition in algal mixotrophs. American Naturalist, 178: 98–112. doi:10.1086/660284
  • Ward, B.A. & Follows, M.J. (2016). Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proceedings of the National Academy of Sciences, 113: 2958–2963. doi:10.1073/pnas.1517118113
  • Wetz, M.S. & Wheeler, P.A. (2007). Release of dissolved organic matter by coastal diatoms. Limnology and Oceanography, 52: 798–807. doi:10.4319/lo.2007.52.2.0798
  • Wickham, S.A. & Wimmer, R. (2019). Does mixotrophy in ciliates compensate for poor-quality prey? Experiments with heterotrophic–mixotrophic species pairs. Journal of Plankton Research, 41: 583–593. doi:10.1093/plankt/fbz052
  • Wilken, S., Choi, C.J. & Worden, A.Z. (2020). Contrasting mixotrophic lifestyles reveal different ecological niches in two closely related marine protists. Journal of Phycology, 56: 52–67. doi:10.1111/jpy.12920
  • Wilken, S., Schuurmans, J.M. & Matthijs, H.C.P. (2014). Do mixotrophs grow as photoheterotrophs? Photophysiological acclimation of the chrysophyte Ochromonas danica after feeding. New Phytologist, 204: 882–889. doi:10.1111/nph.12975
  • Wood, G. & Flynn, K.J. (1995). Growth of Heterosigma carterae (Raphidophyceae) on nitrate and ammonium at three photon flux densities: evidence for N-stress in nitrate-growing cells. Journal of Phycology, 31: 859–867. doi:10.1111/j.0022-3646.1995.00859.x
  • Yoo, Y.D., Seong, K.A., Jeong, H.J., Yih, W., Rho, J.-R., Nam, S.W. & Kim, H.S. (2017). Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae, 68: 105–117. doi:10.1016/j.hal.2017.07.012
  • Zehr, J.P., Eitz, J.S. & Joint, I. (2017). Microbial life in the open ocean: a universe of tiny cells separated by empty space. Science, 357: 646–647. doi:10.1126/science.aan5764
  • Zubkov, M.V. & Tarran, G.A. (2008). High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature, 455: 224–226. doi:10.1038/nature07236