169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of elevated carbon dioxide on the bionomics of maize fall armyworm Spodoptera frugiperda: an age-stage, two-sex life table approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Received 17 Nov 2020, Accepted 05 Jan 2022, Published online: 12 Jan 2022

References

  • Amiri-Jami AR, Sadeghi H, Shoor M. 2012. The performance of Brevicoryne brassicae on ornamental cabbages grown in CO2-enriched atmospheres. J Asia Pac Entomol. 15(2):249–253.
  • Bajracharya ASR, Bhat B, Sharma P, Shashank PR, Meshram NM, Hashmi TR. 2019. First record of fall army worm Spodoptera frugiperda (JE Smith) from Nepal. Ind J Entomol. 81(4):635–639.
  • Birch L. 1948. The intrinsic rate of natural increase of an insect population. J Anim Ecol. 17(1):15–26.
  • Brooks GL, Whittaker JB. 1999. Responses of three generations of a xylem‐feeding insect, Neophilaenus lineatus (Homoptera), to elevated CO2. Global Change Biol. 5(4):395–401.
  • CABI. 2020. Datasheet: Spodoptera frugiperda (Fall armyworm). Invasive species compendium. Wallingford, UK: CABI.
  • Carey JR. 1993. Applied demography for biologists: with special emphasis on insects. Oxford, UK: Oxford University Press.
  • Chapman JW, Williams T, Martínez AM, Cisneros J, Caballero P, Cave RD, Goulson D. 2000. Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behav Ecol Sociobiol. 48(4):321–327.
  • Chi HSIN, Liu HSI. 1985. Two new methods for the study of insect population ecology. Bull Inst Zool. 24(2):225–240.
  • Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol. 17(1):26–34.
  • Chen Q, Li N, Wang X, Ma L, Huang J-B, Huang G-H. 2017. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PloS One. 12(3):e0173380.
  • Chormule A, Shejawal N, Sharanabasappa CM, Asokan R, Swamy HM, Studies Z. 2019. First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. J Entomol Zool Stud. 7:114–117.
  • Daravath V, Chander S, Sagar D. 2018. Impact of elevated carbon dioxide on the protective enzymes in brown planthopper (Nilaparvata lugens) and infested rice (Oryza sativa) plants. Ind J Agric Sci. 88(9):1366–1370.
  • Deevey ES. 1947. Life tables for natural populations of animals. Q Rev Biol. 22(4):283–314.
  • DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR. 2012. Climate change: resetting plant-insect interactions. Plant Physiol. 160(4):1677–1685.
  • Fajer ED, Bowers MD, Bazzaz FA. 1989. The effects of enriched carbon dioxide atmospheres on plant insect herbivore interactions. Science. 243(4895):1198–1200.
  • Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV, Chandrashekara K. 2018. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr Sci. 115(4):621–623.
  • Gherlenda AN, Haigh AM, Moore BD, Johnson SN, Riegler M. 2015. Responses of leaf beetle larvae to elevated [CO2] and temperature depend on Eucalyptus species. Oecologia. 177(2):607–617.
  • Goel MK, Khanna P, Kishore J. 2010. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 1(4):274–278.
  • Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One. 11(10):e0165632.
  • Guru-Pirasanna-Pandi G, Chander S, Pal M, Soumia PSJ. 2018. Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr Sci. 114(8):1767–1777.
  • Hamilton JG, Zangerl AR, Berenbaum MR, Pippen J, Aldea M, DeLucia EH. 2004. Insect herbivory in an intact forest understory under experimental CO2 enrichment. Oecologia. 138(4):566–573.
  • Huang Z, Ali S, Ren SX, Wu JH. 2010. Effect of Isaria fumosoroseus on mortality and fecundity of Bemisia tabaci and Plutella xylostella. Insect Sci. 17(2):140–148.
  • IPCC. 2019. Report for the sixth assessment report: Intergovernmental panel on climate change. Geneva: IPCC.
  • Jackson RB, Cook CW, Pippen JS, Palmer SM. 2009. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology. 90(12):3352–3366.
  • Jiang S, Dai Y, Lu Y, Fan S, Liu Y, Bodlah MA, Parajulee MN, Chen F. 2018. Molecular evidence for the fitness of cotton aphid, Aphis gossypii in response to elevated CO2 from the perspective of feeding behaviour analysis. Front Physiol. 9:1444.
  • Johns CV, Hughes L. 2002. Interactive effects of elevated CO2 and temperature on the leaf‐miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson’s Curse, Echium plantagineum (Boraginaceae). Global Change Biol. 8(2):142–152.
  • Kakde AM, Patel KG, Tayade S. 2014. Role of life table in insect pest management: a review. IOSRJAVS. 7(1):40–43.
  • Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, Hegde K, Navi S, Prabhu ST, Goergen G. 2018. First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag Horti Ecosys. 24(1):23–29.
  • Kaplan EL, Meier P. 1958. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 53(282):457–481.
  • Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, DeLucia EH. 2005. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 167(1):207–218.
  • Landosky JM, Karowe DN. 2014. Will chemical defenses become more effective against specialist herbivores under elevated CO2? Glob Chang Biol. 20(10):3159–3176.
  • Lavanya C, Ashoka J, Sreenivasa AG, Sushila N, Beladhadi BV. 2017. Effect of elevated carbon dioxide and temperature on growth, yield and quality parameters of mulberry. Entomol Ornithol Herpetol Curr Res. 6:1–3.
  • Lee JH, Stahl M, Sawlis S, Suzuki S, Lee JH. 2009. A potential risk assessment of a dengue outbreak in North Central Texas, USA (Part 1 of 2) abundance and temporal variation of dengue vectors. J Environ Health. 71(10):24–30.
  • Li Y, Yu Z, Liu X, Mathesius U, Wang G, Tang C, Wu J, Liu J, Zhang S, Jin J. 2017. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Front Plant Sci. 8:1546.
  • Lincoln DE, Sionit N, Strain BR. 1984. Growth and feeding response of Pseudoplusia includens (Lepidoptera: Noctuidae) to host plants grown in controlled carbon dioxide atmospheres. Environ Entomol. 13(6):1527–1530.
  • Liu S, Waqas MA, Wang S, Xiong X, Wan Y. 2017. Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PloS One. 12(11):e0187724.
  • Liu J, Huang W, Chi H, Wang C, Hua H, Wu G. 2017. Effects of elevated CO2 on the fitness and potential population damage of Helicoverpa armigera based on two-sex life table. Sci Rep. 7(1):1–13.
  • Luginbill P. 1928. The fall army worm. Technical Bulletin No. 34. Washington, DC: USDA.
  • Maia ADH, Luiz AJ, Campanhola C. 2000. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol. 93(2):511–518.
  • Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SD, Peterson JA, Hunt TE. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol. 26(2):286–300.
  • NOAA. 2019. National climate report: national oceanic and atmospheric administration. Washington, DC: NOAA.
  • Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB. 2016. Global threat to agriculture from invasive species. Proc Natl Acad Sci USA. 113(27):7575–7579.
  • Patel RC, Patel JK, Patel PB, Singh R. 1968. Mass breeding of Heliothis armigera (Hbn.). Ind J Entomol. 30:272–280.
  • Rogers CE, Marti OG. 1994. Effects of age at first mating on the reproductive potential of the fall armyworm (Lepidoptera: Noctuidae). Environ Entomol. 23(2):322–325.
  • Sharma HC. 2014. Climate change effects on insects: implications for crop protection and food security. J Crop Improv. 28(2):229–259.
  • Shi BK, Huang JL, Hu CX, Hou ML. 2014. Interactive effects of elevated CO2 and temperature on rice planthopper, Nilaparvata lugens. J Integr Agric. 13(7):1520–1529.
  • Shuqi H, Ying L, Lei Q, Zhihua L, Chao X, Lu Y, Furong G. 2017. The influence of elevated CO2 concentration on the fitness traits of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae). Environ Entomol. 46(3):722–728.
  • Simmons AM, Lynch RE. 1990. Egg production and adult longevity of Spodoptera frugiperda, Helicoverpa zea (Lepidoptera: Noctuidae), and Elasmopalpus lignosellus (Lepidoptera: Pyralidae) on selected adult diets. Fla Entomol. 73(4):665–671.
  • Sisodiya DB, Raghunandan BL, Bhatt NA, Verma HS, Shewale CP, Timbadiya BG, Borad PK. 2018. The fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae); first report of new invasive pest in maize fields of Gujarat, India. J Entomol Zool Stud. 6(5):2089–2091.
  • Southwood TRE. 1978. The construction, description and analysis of age-specific life-tables. In Ecological methods. Dordrecht: Springer; p. 356–387.
  • Srikanth J, Geetha N, Singaravelu B, Ramasubramanian T, Mahesh P, Saravanan L, Salin KP, Chitra N, Muthukumar M. 2018. First report of occurrence of fall armyworm Spodoptera frugiperda in sugarcane from Tamil Nadu, India. J Sugarcane Res. 8(2):195–202.
  • Srinivasa Rao M, Manimanjari D, Vanaja M, Rama Rao CA, Srinivas K, Rao VUM, Venkateswarlu B, Jay R. 2012. Impact of elevated CO₂ on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. J Insect Sci. 12:103–110.
  • Tuan SJ, Lee CC, Chi H. 2014. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag Sci. 70(5):805–813.
  • Veteli TO, Kuokkanen K, Julkunen Tiitto R, Roininen H, Tahvanainen J. 2002. Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Global Change Biol. 8(12):1240–1252.
  • Wu G, Chen FJ, Ge F. 2006. Response of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2. J Appl Entomol. 130(1):2–9.
  • Wu G, Chen FJ, Ge F, Sun YC. 2007. Effects of elevated carbon dioxide on the growth and foliar chemistry of transgenic Bt cotton. J Integr Plant Biol. 49(9):1361–1369.
  • Wu G, Chen FJ, Xiao N-W, Ge F. 2010. Plant allocation to defensive compounds of transgenic Bt cotton in response to infestation by cotton bollworm under conditions of elevated CO2. Int J Pest Manag. 56(2):81–89.
  • Xie H, Wu S, Yu L, Xu C, He K. 2018. Effects of elevated CO2 and temperature on two spotted spider mite (Acari: Tetranychidae) feeding on maize. J Entomol Sci. 53(2):205–218.
  • Zavala JA, Nabity PD, Delucia EH. 2013. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol. 58:79–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.