1,058
Views
37
CrossRef citations to date
0
Altmetric
REVIEWS ON PROTEIN ACYLATION AND MICRODOMAINS IN MEMBRANE FUNCTION

Acyltransferases for secreted signalling proteins (Review)

&
Pages 104-113 | Received 24 Oct 2008, Published online: 09 Jul 2009

References

  • Miura GI, Buglino J, Alvarado D, Lemmon MA, Resh MD, Treisman JE. Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by restricting its diffusion. Dev Cell 2006; 10: 167–176
  • Smotrys JE, Linder ME. Palmitoylation of intracellular signalling proteins: regulation and function. Annu Rev Biochem 2004; 73: 559–587
  • Resh MD. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2006; 2: 584–590
  • Gorfinkiel N, Sierra J, Callejo A, Ibañez C, Guerrero I. The Drosophila ortholog of the human Wnt inhibitor factor Shifted controls the diffusion of lipid-modified Hedgehog. Dev Cell 2005; 8: 241–253
  • Zhai L, Chaturvedi D, Cumberledge S. Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem 2004; 279: 33220–33227
  • Hofmann K. A superfamily of membrane-bound O-acyltransferase with implications for Wnt signalling. Trends Biochem Sci 2000; 25: 111–112
  • Shindou H, Shimizu T. Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem. 2009; 284: 1–5
  • Abe Y, Kita Y, Niikura T. Mammalian Gup1, a homolog of Saccharomyces cerevisiae glycerol uptake/transporter 1, acts as a negative regulator for N-terminal palmitoylation of Sonic hedgehog. FEBS J 2008; 275: 318–331
  • Bosson R, Jaquenod M, Conzelmann A. GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol Biol Cell 2006; 17: 2636–2645
  • Nybakken K, Perrimon N. Hedgehog signal transduction: recent findings. Curr Opin Genet Dev 2002; 12: 503–511
  • Martí E, Bovolenta P. Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci 2002; 25: 89–96
  • Cooper MK, Porter JA, Young KE, Beachy PA. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 1998; 280: 1603–1607
  • Hahn H, Christiansen J, Wicking C, Zaphiropoulos PG, Chidambaram A, Gerrard B, Vorechovsky I, Bale AE, Toftgard R, Dean M, Wainwright B. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem 1996; 271: 12125–12128
  • Lauth M, Toftgård R. The Hedgehog pathway as a drug target in cancer therapy. Curr Poin Investig Drugs 2007; 8: 457–461
  • Buglino JA, Resh MD. Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 2008; 283: 22076–22088
  • Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ. Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 1997; 91: 85–97
  • Mann RK, Beachy PA. Novel lipid modifications of secreted protein signals. Annu Rev Biochem 2004; 73: 891–923
  • Burke R, Nellen D, Bellotto M, Hafen E, Senti K-A, Dickson B, Basler K. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 1999; 99: 803–815
  • Kawakami T, Kawcak T'N, Li Y-J, Zhang W, Hu Y, Chuang P-T. Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 2002; 129: 5753–5765
  • Eaton S. Multiple roles for lipids in the Hedgehog signaling pathway. Nat Rev Mol Cell Biol 2008; 9: 437–445
  • Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, McMahon AP. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 2001; 105: 599–612
  • Ingham P. Hedgehog signalling. Curr Biol 2007; 18: R238–241
  • Incardona JP, Roelink H. The role of cholesterol in Shh signaling and teratogen-induced holoprosencephaly. Cell Mol Life Sci 2000; 57: 1709–1719
  • Alcedo J, Noll M. Hedgehog and its patched-smoothened receptor complex: a novel signalling mechanism at the cell surface. Biol Chem 1997; 378: 583–590
  • Ingham PW. Hedgehog signaling: a tale of two lipids. Science 2001; 294: 1879–1881
  • Rietveld A, Neutz S, Simons K, Eaton S. Association of sterol- and glycosylphosphatidylinositollinked proteins with Drosophila raft lipid microdomains. J Biol Chem 1999; 274: 12049–12054
  • Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, Taylor FR, Wang EA, Galdes A. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 1998; 273: 14037–14045
  • Chamoun Z, Mann RK, Nellen D, von Kessler DP, Bellotto M, Beachy PA, Basler K. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the Hedgehog signal. Science 2001; 293: 2080–2084
  • Micchelli CA, The I, Selva E, Mogila V, Perrimon N. Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signalling. Development 2002; 129: 843–851
  • Hansen JS, Faergeman NJ, Kragelund BB, Knudsen J. Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand dependent manner in mammalian cells. Biochem J 2008; 410: 463–472
  • Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003; 3: 903–911
  • Kümmel D, Heinemann U, Veit M. Unique self-palmitoylation activity of the transport protein particle component Bet3: a mechanism required for protein stability. Proc Natl Acad Sci USA 2006; 103: 12701–12706
  • Gallet A, Ruel L, Staccini-Lavenant L, Thérond PP. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development 2006; 133: 407–418
  • Callejo A, Torroja C, Quijada L, Guerrero I. Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix. Development 2006; 133: 471–483
  • Gibson MC, Lehman DA, Schubiger G. Lumenal transmission of decapentaplegic in Drosophila imaginal discs. Dev Cell 2002; 3: 451–460
  • Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 2004; 18: 641–659
  • Belting M. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 2003; 28: 145–151
  • Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002; 71: 435–471
  • Nybakken K, Perrimon N. Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochim Biophys Acta 2002; 1573: 280–291
  • Tsuda M, Kamimura K, Nakato H, Archer M, Staatz W, Fox B, Humphrey M, Olson S, Futch T, Kaluza V, Siegfried E, Stam L, Selleck SB. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 1999; 400: 276–280
  • Lin X, Perrimon N. Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconj J 2002; 19: 363–368
  • Carrasco H, Olivares GH, Faunes F, Oliva C, Larraín J. Heparan sulfate proteoglycans exert positive and negative effects in Shh activity. J Cell Biochem 2005; 96: 831–838
  • Gallet A, Rodriguez R, Ruel L, Therond PP. Cholesterol modification of hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to hedgehog. Dev Cell 2003; 4: 191–204
  • Gallet A, Therond PP. Temporal modulation of the Hedgehog morphogen gradient by a patched-dependent targeting to lysosomal compartment. Dev Biol 2005; 277: 51–62
  • Desbordes SC, Sanson B. The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila. Development 2003; 130: 6245–6255
  • Perrimon N, Häcker U. Wingless, hedgehog and heparan sulfate proteoglycans. Development 2004; 131: 2509–2511
  • Zeng X, Goetz JA, Suber LM, Scott WJ, Jr, Schreiner CM, Robbins DJ. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 2001; 411: 716–720
  • Datta S, Pierce M, Datta MW. Perlecan signaling: helping hedgehog stimulate prostate cancer growth. Int J Biochem Cell Biol 2006; 38: 1855–1861
  • Kirkpatrick, CA, Selleck, SB. 2007. Heparan sulfate proteoglycans at a glance. J Cell Sci. 1829–1832.
  • Kirkpatrick CA, Selleck SB. Heparan sulfate proteoglycans at a glance. J Cell Sci 2007; 120: 1829–1832
  • Datta MW, Hernandez AM, Schlicht MJ, Kahler AJ, DeGueme AM, Dhir R, Shah RB, Farach-Carson C, Barrett A, Datta S. Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway. Mol Cancer 2006; 5: 9
  • Glise B, Miller CA, Crozatier M, Halbisen MA, Wise S, Olsen DJ, Vincent A, Blair S. Shifted, the Drosophila orthologue of Wnt inhibitory factor-1, contraols distribustion and movement of Hedgehog. Dev Cell 2005; 8: 255–266
  • Torroja C, Gorfinkiel N, Guerrero I. Mechanisms of Hedgehog gradient formation and interpretation. J Neurobiol 2005; 64: 334–356
  • Couchman JR. Syndecans: proteoglycan regulators of cell-surface microdomains?. Nat Rev Mol Cell Biol 2003; 4: 926–937
  • Vyas N, Goswami D, Manonmani A, Sharma P, Ranganath HA, VijayRaghavan K, Shashidhara LS, Sowdhamini R, Mayor S. Nanoscale organization of Hedgehog is essential for longrange signalling. Cell 2008; 133: 1214–1227
  • Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 2006; 11: 791–801
  • Franch-Marro X, Wendler F, Griffith J, Maurice MM, Vincent JP. In vivo role of lipid adducts on Wingless. J Cell Sci 2008; 121: 1587–1592
  • Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448–452
  • Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 2006; 11: 791–801
  • Ching W, Hang HC, Nusse R. Lipid-independent secretion of a Drosophila Wnt protein. J Biol Chem 2008; 283: 17092–17098
  • Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N. The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev 1996; 10: 3116–3128
  • Tanaka K, Okabayashi K, Asashima M, Perrimon N, Kadowaki T. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem 2000; 267: 4300–4311
  • Galli LM, Barnes TL, Secrest SS, Kadowaki T, Burrus LW. Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development 2007; 134: 3339–3348
  • Hausmann G, Basler K. Wnt lipid modifications: not as saturated as we thought. Dev Cell 2006; 11: 751–752
  • Chen Z, Li J, Li QS, Fan JQ, Dong XM, Xu JP, Wang XM, Yang GW, Yan P, Wen GZ, Zhang YT, Niu RG, Nan PH, He J, Zhou HM. Suppression of PPN/MG61 attenuates Wnt/beta-catenin signaling pathway and induces apoptosis in human lung cancer. Oncogene 2008; 27: 3483–3488
  • Paller AS. Wnt signaling in focal dermal hypoplasia. Nat Genet 2007; 39: 820–821
  • Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J 2007; 402: 515–523
  • Bartscherer K, Boutros M. Regulation of Wnt protein secretion and its role in gradient formation. EMBO Rep 2008; 9: 977–982
  • Vyas N, Goswami D, Manonmani A, Sharma P, Ranganath HA, VijayRaghavan K, Shashidhara LS, Sowdhamini R, Mayor S. Nanoscale organization of Hedgehog is essential for long-range signaling. Cell 2008; 133: 1214–1227
  • Zhai L, Chaturvedi D, Cumberledge S. Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem 2004; 279: 33220–33227
  • Katanaev VL, Solis GP, Hausmann G, Buestorf S, Katanayeva N, Schrock Y, Stuermer CA, Basler K. Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. EMBO J 2008; 27: 509–521
  • Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, Witcher DR, Luo S, Onyia JE, Hale JE. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA 2008; 105: 6320–6325
  • Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008; 132: 387–396
  • Zhu X, Cao Y, Voogd K, Steiner DF. On the processing of proghrelin to ghrelin. J Biol Chem 2006; 281: 38867–38870
  • Gualillo O, Lago F, Casanueva FF, Dieguez C. One ancestor, several peptides post-translational modifications of preproghrelin generate several peptides with antithetical effects. Mol Cell Endocrinol 2006; 256: 1–8
  • Yang J, Zhao TJ, Goldstein JL, Brown MS. Inhibition of ghrelin O-acyltransferase (GOAT) by octanoylated pentapeptides. Proc Natl Acad Sci USA 2008; 105: 10750–10755
  • Tong J, Pfluger PT, Tschöp MH. Gastric O-acyl transferase activates hunger signal to the brain. Proc Natl Acad Sci USA 2008; 105: 6213–6214
  • Nishi Y, Hiejima H, Hosoda H, Kaiya H, Mori K, Fukue Y, Yanase T, Nawata H, Kangawa K, Kojima M. Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin. Endocrinology 2005; 146: 2255–2264

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.