874
Views
11
CrossRef citations to date
0
Altmetric
PAPERS

Sodium translocation by the iminoglycinuria associated imino transporter (SLC6A20)

, , , , &
Pages 333-346 | Received 02 Apr 2009, Published online: 19 Sep 2009

References

  • Bröer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int 2006; 48(6–7)559–567
  • Hahn MK, Blakely RD. The functional impact of SLC6 transporter genetic variation. Annu Rev Pharmacol Toxicol 2007; 47: 401–441
  • Bröer S. Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda) 2008; 23: 95–103
  • Boudko DY, Kohn AB, Meleshkevitch EA, Dasher MK, Seron TJ, Stevens BR, Harvey WR. Ancestry and progeny of nutrient amino acid transporters. Proc Natl Acad Sci USA 2005; 102(5)1360–1365
  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of a bacterial homologue of Na(+)/Cl(−)-dependent neurotransmitter transporters. Nature 2005; 437: 215–223
  • Beuming T, Shi L, Javitch JA, Weinstein H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol 2006; 70(5)1630–1642
  • Zhou Y, Zomot E, Kanner BI. Identification of a lithium interaction site in the gamma-aminobutyric acid (GABA) transporter GAT-1. J Biol Chem 2006; 281(31)22092–22099
  • Vandenberg RJ, Shaddick K, Ju P. Molecular basis for substrate discrimination by glycine transporters. J Biol Chem 2007; 282(19)14447–14453
  • Zhang YW, Rudnick G. The cytoplasmic substrate permeation pathway of serotonin transporter. J Biol Chem 2006; 281(47)36213–36220
  • Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G. Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci USA 2008; 105(30)10338–10343
  • Forrest LR, Tavoulari S, Zhang YW, Rudnick G, Honig B. Identification of a chloride ion binding site in Na + /Cl -dependent transporters. Proc Natl Acad Sci USA 2007; 104(31)12761–12766
  • Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 2007; 449(7163)726–730
  • Rudnick G. Bioenergetics of neurotransmitter transport. J Bioenerg Biomembr 1998; 30(2)173–185
  • Bröer S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch 2002; 444(4)457–466
  • Supplisson S, Roux MJ. Why glycine transporters have different stoichiometries. FEBS Lett 2002; 529(1)93–101
  • Bröer A, Tietze N, Kowalczuk S, Chubb S, Munzinger M, Bak LK, Bröer S. The orphan transporter v7-3 (slc6a15) is a Na + -dependent neutral amino acid transporter (B0AT2). Biochem J 2006; 393(Pt 1)421–430
  • Kowalczuk S, Bröer A, Munzinger M, Tietze N, Klingel K, Bröer S. Molecular cloning of the mouse IMINO system: an Na + - and Cl − -dependent proline transporter. Biochem J 2005; 386(Pt 3)417–422
  • Takanaga H, Mackenzie B, Suzuki Y, Hediger MA. Identification of Mammalian Proline Transporter SIT1 (SLC6A20) with Characteristics of Classical System Imino. J Biol Chem 2005; 280(10)8974–8984
  • Loo DD, Eskandari S, Boorer KJ, Sarkar HK, Wright EM. Role of Cl− in electrogenic Na + -coupled cotransporters GAT1 and SGLT1. J Biol Chem 2000; 275(48)37414–37422
  • Stevens BR, Wright EM. Kinetics of the intestinal brush border proline (Imino) carrier. J Biol Chem 1987; 262(14)6546–6551
  • Chesney RW, Zelikovic I, Budreau A, Randle D. Chloride and membrane potential dependence of sodium ion-proline symport. J Am Soc Nephrol 1991; 2(4)885–893
  • Kanner BI, Sharon I. Active transport of L-proline by membrane vesicles isolated from rat brain. Biochim Biophys Acta 1980; 600(1)185–194
  • Bröer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H, Auray-Blais C, Cavanaugh JA, Bröer A, Rasko JE. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 2008; 118(12)3881–3892
  • Bröer S. Xenopus laevis Oocytes. Methods Mol Biol 2003; 227: 245–258
  • Stegen C, Matskevich I, Wagner CA, Paulmichl M, Lang F, Bröer S. Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim Biophys Acta 2000; 1467(1)91–100
  • Van Winkle LJ. Biomembrane transport. Academic Press, San Diego 1999
  • Attwell D, Barbour B, Szatkowski M. Nonvesicular release of neurotransmitter. Neuron 1993; 11(3)401–407
  • Weber W. Ion currents of Xenopus laevis oocytes: state of the art. Biochim Biophys Acta 1999; 1421(2)213–233
  • Chubb S, Kingsland AL, Bröer A, Bröer S. Mutation of the 4F2 heavy-chain carboxy terminus causes y+ LAT2 light-chain dysfunction. Mol Membr Biol 2006; 23(3)255–267
  • Zhang Y. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 2007; 69(Suppl. 8)108–117
  • Vriend, G. 1990. WHAT IF: a molecular modeling and drug design program. J Mol Graph, 8(1)52–6, 29.
  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26(16)1781–1802
  • Feller SE, Gawrisch K, MacKerell AD, Jr. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 2002; 124(2)318–326
  • Mackerell AD, Jr. Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 2004; 25(13)1584–1604
  • Guvench O, MacKerell AD, Jr. Comparison of protein force fields for molecular dynamics simulations. Methods Mol Biol 2008; 443: 63–88
  • Bröer S, Bröer A, Hamprecht B. Expression of Na + -independent isoleucine transport activity from rat brain in Xenopus laevis oocytes. Biochim Biophys Acta 1994; 1192(1)95–100
  • Wright JK, Dornmair K, Mitaku S, Moroy T, Neuhaus JM, Seckler R, Vogel H, Weigel U, Jahnig F, Overath P. Lactose: H+ carrier of Escherichia coli: kinetic mechanism, purification, and structure. Ann NY Acad Sci 1985; 456: 326–341
  • Aubrey KR, Vandenberg RJ, Clements JD. Dynamics of forward and reverse transport by the glial glycine transporter, glyt1b. Biophys J 2005; 89(3)1657–1668
  • Bohmer C, Bröer A, Munzinger M, Kowalczuk S, Rasko JE, Lang F, Bröer S. Characterization of mouse amino acid transporter B0AT1 (slc6a19). Biochem J 2005; 389(Pt 3)745–751
  • Camargo SM, Makrides V, Virkki LV, Forster IC, Verrey F. Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter. Pflugers Arch 2005; 451(2)338–348
  • Takanaga H, Mackenzie B, Peng JB, Hediger MA. Characterization of a branched-chain amino-acid transporter SBAT1 (SLC6A15) that is expressed in human brain. Biochem Biophys Res Commun 2005; 337(3)892–900
  • Nelson N. The family of Na + /Cl- neurotransmitter transporters. J Neurochem 1998; 71(5)1785–1803
  • Sloan JL, Mager S. Cloning and functional expression of a human Na(+) and Cl(−)-dependent neutral and cationic amino acid transporter B(0 + ). J Biol Chem 1999; 274(34)23740–23745
  • Stevens BR, Wright EM. Kinetic model of the brush-border proline/sodium (IMINO) cotransporter. Ann NY Acad Sci 1985; 456: 115–117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.