1,371
Views
8
CrossRef citations to date
0
Altmetric
Articles

Differential gene expression in heterophils isolated from commercial hybrid and Thai indigenous broiler chickens under quercetin supplementation

, , , , & ORCID Icon
Pages 804-812 | Received 07 Aug 2017, Accepted 12 Nov 2017, Published online: 23 Nov 2017

References

  • Abasht B, Kaiser M, Lamont S. 2008. Toll-like receptor gene expression in cecum and spleen of advanced intercross line chicks infected with Salmonella enterica serovar Enteritidis. Vet Immunol Immunopathol. 123:314–323. doi: 10.1016/j.vetimm.2008.02.010
  • Akaboot P, Duangjinda M, Phasuk Y, Kaenechan C, Chinchiyanond W. 2012. Genetic characterization of Red Junglefowl (Gallus gallus), Thai indigenous chicken (Gallus domesticus), and two commercial lines using selective functional genes compared to microsatellite markers. Genet Mol Res. 11:1881–1890. doi: 10.4238/2012.July.19.7
  • Alzoreky N, Nakahara K. 2003. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int J Food Microbiol. 80:223–230. doi: 10.1016/S0168-1605(02)00169-1
  • Askari G, Ghiasvand R, Feizi A, Ghanadian SM, Karimian J. 2012. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J Res Med Sci. 17:637–641.
  • Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A, Dulak J, Döring F, Wolffram S, Rimbach G. 2011. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem. 22:293–299. doi: 10.1016/j.jnutbio.2010.02.008
  • Boonkhot P, Tadee P, Patchanee P. 2015. Serodiversity and antimicrobial resistance profiles of detected salmonella on swine production chain in Chiang Mai and Lamphun, Thailand. Acta Sci Vet. 43:1263.
  • Chan S-T, Chuang C-H, Yeh C-L, Liao J-W, Liu K-L, Tseng M-J, Yeh S-L. 2012. Quercetin supplementation suppresses the secretion of pro-inflammatory cytokines in the lungs of Mongolian gerbils and in A549 cells exposed to benzo [a] pyrene alone or in combination with β-carotene: in vivo and ex vivo studies. J Nutr Biochem. 23:179–185. doi: 10.1016/j.jnutbio.2010.11.014
  • Chang Y-C, Tsai M-H, Sheu WH-H, Hsieh S-C, Chiang A-N. 2013. The therapeutic potential and mechanisms of action of quercetin in relation to lipopolysaccharide-induced sepsis in vitro and in vivo. PLoS One. 8:e80744. doi: 10.1371/journal.pone.0080744
  • Cheeseman JH, Kaiser MG, Ciraci C, Kaiser P, Lamont SJ. 2007. Breed effect on early cytokine mRNA expression in spleen and cecum of chickens with and without Salmonella enteritidis infection. Dev Comp Immunol. 31:52–60. doi: 10.1016/j.dci.2006.04.001
  • Cheeseman JH, Lillehoj HS, Lamont SJ. 2008. Reduced nitric oxide production and iNOS mRNA expression in IFN-γ-stimulated chicken macrophages transfected with iNOS siRNAs. Vet Immunol Immunopathol. 125:375–380. doi: 10.1016/j.vetimm.2008.05.015
  • Chiang H-I, Swaggerty CL, Kogut MH, Dowd SE, Li X, Pevzner IY, Zhou H. 2008. Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44K Agilent microarray. BMC Genomics. 9:526. doi: 10.1186/1471-2164-9-526
  • Cho S-Y, Park S-J, Kwon M-J, Jeong T-S, Bok S-H, Choi W-Y, Jeong W-I, Ryu S-Y, Do S-H, Lee C-S. 2003. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-κB pathway in lipopolysaccharide-stimulated macrophage. Mol Cell Biochem. 243:153–160. doi: 10.1023/A:1021624520740
  • Chuammitri P, Amphaiphan C, Nojit P. 2015. In vitro modulatory effects of quercetin on bovine neutrophil effector functions. Thai J Vet Med. 45:63–72.
  • Chuammitri P, Redmond SB, Kimura K, Andreasen CB, Lamont SJ, Palić D. 2011. Heterophil functional responses to dietary immunomodulators vary in genetically distinct chicken lines. Vet Immunol Immunopathol. 142:219–227. doi: 10.1016/j.vetimm.2011.05.019
  • Chuammitri P, Srikok S, Saipinta D, Boonyayatra S. 2017. The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils. Vet World. 10:403–410. doi: 10.14202/vetworld.2017.403-410
  • Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F, Rychlik I. 2011. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infect Immun. 79:2755–2763. doi: 10.1128/IAI.01375-10
  • Das T, Mukherjee S, Chaudhuri K. 2012. Effect of quercetin on Vibrio cholerae induced nuclear factor-κB activation and interleukin-8 expression in intestinal epithelial cells. Microbes Infect. 14:690–695. doi: 10.1016/j.micinf.2012.02.007
  • Dorji N, Daungjinda M, Phasuk Y. 2011. Genetic characterization of Thai indigenous chickens compared with commercial lines. Trop Anim Health Prod. 43:779–785. doi: 10.1007/s11250-010-9763-3
  • Endale M, Park S-C, Kim S, Kim S-H, Yang Y, Cho JY, Rhee MH. 2013. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology. 218:1452–1467. doi: 10.1016/j.imbio.2013.04.019
  • Formica JV, Regelson W. 1995. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 33:1061–1080. doi: 10.1016/0278-6915(95)00077-1
  • Freitas M, Ribeiro D, Tomé SM, Silva AM, Fernandes E. 2014. Synthesis of chlorinated flavonoids with anti-inflammatory and pro-apoptotic activities in human neutrophils. Eur J Med Chem. 86:153–164. doi: 10.1016/j.ejmech.2014.08.035
  • Geraets L, Haegens A, Brauers K, Haydock JA, Vernooy JH, Wouters EF, Bast A, Hageman GJ. 2009. Inhibition of LPS-induced pulmonary inflammation by specific flavonoids. Biochem Biophys Res Commun. 382:598–603. doi: 10.1016/j.bbrc.2009.03.071
  • Goliomytis M, Tsoureki D, Simitzis P, Charismiadou M, Hager-Theodorides A, Deligeorgis S. 2014. The effects of quercetin dietary supplementation on broiler growth performance, meat quality, and oxidative stability. Poult Sci. 93:1957–1962. doi: 10.3382/ps.2013-03585
  • Halper J, Burt DW, Romanov MN. On reassessment of the chicken TGFB4 gene as TGFB1. Growth Factors. 22:121–122. doi: 10.1080/08977190410001712878
  • Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K, James T, Lynn DJ, Babiuk LA, O’Farrelly C. 2006. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun. 74:1692–1698. doi: 10.1128/IAI.74.3.1692-1698.2006
  • Hong YH, Lillehoj HS, Lee SH, Dalloul RA, Lillehoj EP. 2006. Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections. Vet Immunol Immunopathol. 114:209–223. doi: 10.1016/j.vetimm.2006.07.007
  • Huang R, Zhong T, Wu H. 2015. Quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch Med Sci. 11:427–432. doi: 10.5114/aoms.2015.50975
  • Hughes S, Poh T-Y, Bumstead N, Kaiser P. 2007. Re-evaluation of the chicken MIP family of chemokines and their receptors suggests that CCL5 is the prototypic MIP family chemokine, and that different species have developed different repertoires of both the CC chemokines and their receptors. Dev Comp Immunol. 31:72–86. doi: 10.1016/j.dci.2006.04.003
  • Kaiser P, Poh TY, Rothwell L, Avery S, Balu S, Pathania US, Hughes S, Goodchild M, Morrell S, Watson M. 2005. A genomic analysis of chicken cytokines and chemokines. J Interferon Cytokine Res. 25:467–484. doi: 10.1089/jir.2005.25.467
  • Kogut MH, Rothwell L, Kaiser P. 2003. Differential regulation of cytokine gene expression by avian heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enteritidis. J Interferon Cytokine Res. 23:319–327. doi: 10.1089/107999003766628160
  • Liu J, Li X, Yue Y, Li J, He T, He Y. 2005. The inhibitory effect of quercetin on IL-6 production by LPS stimulated neutrophils. Cell Mol Immunol. 2:455–460.
  • Liu H, Zhang M, Han H, Yuan J, Li Z. 2010. Comparison of the expression of cytokine genes in the bursal tissues of the chickens following challenge with infectious bursal disease viruses of varying virulence. Virol J. 7:364. doi: 10.1186/1743-422X-7-364
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 25:402–408. doi: 10.1006/meth.2001.1262
  • Malek M, Hasenstein J, Lamont S. 2004. Analysis of chicken TLR4, CD28, MIF, MD-2, and LITAF genes in a Salmonella enteritidis resource population. Poult Sci. 83:544–549. doi: 10.1093/ps/83.4.544
  • Mellata M, Dho-Moulin M, Dozois CM, Curtiss III R, Lehoux B, Fairbrother JM. 2003. Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun. 71:494–503. doi: 10.1128/IAI.71.1.494-503.2003
  • Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD. 2010. Genemania Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 26:2927–2928. doi: 10.1093/bioinformatics/btq562
  • Motulsky HJ, Brown RE. 2006. Detecting outliers when fitting data with nonlinear regression–a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics. 7:123. doi: 10.1186/1471-2105-7-123
  • Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA, Kandaswami C. 2006. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-κβ system. Clin Vaccine Immunol. 13:319–328. doi: 10.1128/CVI.13.3.319-328.2006
  • Nojit P, Ampaipun J, Chuammitri P. 2014. Effects of quercetin on chicken heterophil cellular functions. Chaing Mai Vet J. 12:167–178.
  • Redmond SB, Chuammitri P, Andreasen CB, Palić D, Lamont SJ. 2009. Chicken heterophils from commercially selected and non-selected genetic lines express cytokines differently after in vitro exposure to Salmonella enteritidis. Vet Immunol Immunopathol. 132:129–134. doi: 10.1016/j.vetimm.2009.05.010
  • Sick C, Schneider K, Staeheli P, Weining KC. 2000. Novel chicken CXC and CC chemokines. Cytokine. 12:181–186. doi: 10.1006/cyto.1999.0543
  • Sturn A, Quackenbush J, Trajanoski Z. 2002. Genesis: cluster analysis of microarray data. Bioinformatics. 18:207–208. doi: 10.1093/bioinformatics/18.1.207
  • Swaggerty CL, Kogut MH, Ferro PJ, Rothwell L, Pevzner IY, Kaiser P. 2004. Differential cytokine mRNA expression in heterophils isolated from Salmonella-resistant and-susceptible chickens. Immunology. 113:139–148. doi: 10.1111/j.1365-2567.2004.01939.x
  • Szmolka A, Wiener Z, Matulova ME, Varmuzova K, Rychlik I. 2015. Gene expression profiles of chicken embryo fibroblasts in response to Salmonella enteritidis infection. PLoS One. 10:e0127708. doi: 10.1371/journal.pone.0127708
  • Tohidi R, Idris IB, Panandam JM, Bejo MH. 2012. The effects of polymorphisms in IL-2, IFN-γ, TGF-β2, IgL, TLR-4, MD-2, and iNOS genes on resistance to Salmonella enteritidis in indigenous chickens. Avian Pathol. 41:605–612. doi: 10.1080/03079457.2012.739680
  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35:W71–W74. doi: 10.1093/nar/gkm306
  • Wadsworth TL, Koop DR. 1999. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem Pharmacol. 57:941–949. doi: 10.1016/S0006-2952(99)00002-7
  • Withanage G, Kaiser P, Wigley P, Powers C, Mastroeni P, Brooks H, Barrow P, Smith A, Maskell D, McConnell I. 2004. Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar typhimurium. Infect Immun. 72:2152–2159. doi: 10.1128/IAI.72.4.2152-2159.2004
  • Yang WS, Jeong D, Yi Y-S, Lee B-H, Kim TW, Htwe KM, Kim Y-D, Yoon KD, Hong S, Lee W-S. 2014. Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1. J Ethnopharmacol. 151:1165–1174. doi: 10.1016/j.jep.2013.12.033