2,041
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Diagnostic and therapeutic strategy for Clostridium perfringens infection in postpartum dairy cows: a report of 14 cases

ORCID Icon, , , , , , & ORCID Icon show all
Pages 350-354 | Received 13 Jan 2022, Accepted 11 May 2022, Published online: 27 May 2022

References

  • Ceciliani F, Lecchi C, Urh C, Sauerwein H. 2018. Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J Proteomics. 178:92–106. doi:10.1016/j.jprot.2017.10.010.
  • De Rensis F, Lopez-Gatius F, García-Ispierto I, Morini G, Scaramuzzi R. 2017. Causes of declining fertility in dairy cows during the warm season. Theriogenology. 91:145–153. doi:10.1016/j.theriogenology.2016.12.024.
  • Goossens E, Valgaeren BR, Pardon B, Haesebrouck F, Ducatelle R, Deprez PR, et al. 2017. Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis. Vet Res. 48(1):9. doi:10.1186/s13567-017-0413-x.
  • Goossens E, Verherstraeten S, Valgaeren B, Pardon B, Timbermont L, Schauvliege S, et al. 2016. Toxin-neutralizing antibodies protect against Clostridium perfringens-induced necrosis in an intestinal loop model for bovine necrohemorrhagic enteritis. BMC Vet Res. 12(1):101. doi:10.1186/s12917-016-0730-8.
  • Guo Y. 2019. Diagnosis and comprehensive control of clostridiosis welchii in cattle and sheep. Animal Husbandry Feed Science. 40(6):110–112. doi:10.16003/j.cnki.issn1672-5190.2019.06.030.
  • Hou ZD, Zu XZ, Weng YB, Ge JJ, Wu ZY. 2022. Predisposing factors and prevention of clostridium enteritis of calves in large-scale dairy farms. Grass-Feeding Livestock. 6:32–36. doi:10.16863/j.cnki.1003-6377.2020.06.006.
  • Johnston M, Whiteside T, Allen M, Kurtz D. 2022. Clostridium perfringenstoxigenic profile of strains isolated from Natural ingredient laboratory animal diets. Comp Med. 72(1):50–58. doi:10.30802/AALAS-CM-22-000013.
  • Lacey J, Johanesen P, Lyras D, Moore R. 2019. In silico identification of novel toxin homologs and Associated mobile genetic elements in. Pathogens (Basel, Switzerland). 8(1):16. doi:10.3390/pathogens8010016.
  • Liu ZL, He MR, Zhou JL, He BN, Wang T, Zhao SQ, Wang L, Zhang SX, Liu SS, Yue S. 2019. Detection and analysis of the major toxin genes of cattle Clostridium perfringens isolates. J Heilongjiangbayi Agricultural University. 31(4):21–27. doi:10.3969/j.issn.1002-2090.2019.04.004.
  • Navarro M, McClane B, Uzal F. 2018. Clostridium perfringensmechanisms of action and cell death Associated with toxins. Toxins (Basel). 10(5):212. doi:10.3390/toxins10050212.
  • Prescott J, Parreira V, Mehdizadeh Gohari I, Lepp D, Gong J. 2016. The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathology: Journal of the WVPA. 45(3):288–294. doi:10.1080/03079457.2016.1139688.
  • Qing LI, Guisheng YE. 2019. Sequence and protein structure analysis of virR gene of Clostridium perfringens type a isolated strain from qinghai. J Anhui Agri University. 46(5):800–805 (In Chinese). doi:10.13610/j.cnki.1672-352x.20190917.001
  • Rahimoon MM, Zaman JK, Babar A, Mirani AH. Prevalence of enterotoxemia and antibiogram of Clostridium perfringens isolated from diarrheic goat in the vicinity of district Tharparkar, Sindh, Pakistan. 2021. doi:10.19045/bspab.2021.100044
  • Sepehrifar H, Pilehchian Langroudi R, Ataei S, Haddadi A. 2021. Evaluation and comparison of Clostridium epsilon-alpha fusion gene Expression using different commercial Expression vector. Arch Razi Inst. 76(1):7–16. doi:10.22092/ari.2019.126604.1349.
  • Sun WY, Huang XY, Yang QL, Yan ZQ, Wang PF, Gao XL, et al. 2018. Study on newborn piglet diarrhea induced by C. perfringens type C. Lanzhou (China): Gansu Agricultural University.
  • Takehara M, Kobayashi K, Nagahama M. 2021. Clostridium perfringensToll-Like receptor 4 protects against infection in mice. Front Cell Infect Microbiol. 11:633440. doi:10.3389/fcimb.2021.633440.
  • Uzal F, Navarro M, Li J, Freedman J, Shrestha A, McClane B. 2018. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe. 53:11–20. doi:10.1016/j.anaerobe.2018.06.002.
  • Velázquez M, Peralta M, Angeli E, Stassi A, Gareis N, Durante L, et al. 2019. Immune status during postpartum, peri-implantation and early pregnancy in cattle: An updated view. Anim Reprod Sci. 206:1–10. doi:10.1016/j.anireprosci.2019.05.010.
  • Wankhade P, Manimaran A, Kumaresan A, Jeyakumar S, Ramesha K, Sejian V, et al. 2017. Metabolic and immunological changes in transition dairy cows: A review. Veterinary World. 10(11):1367–1377. doi:10.14202/vetworld.2017.1367-1377.
  • Yanagimoto K, Haramoto E. 2021. Isolation of alpha-toxin-deficient Clostridium perfringens type F from sewage influents and effluents. Microbiol Spectr. 9(1):e0021421. doi:10.1128/Spectrum.00214-21.
  • Zebeli Q, Ghareeb K, Humer E, Metzler-Zebeli B, Besenfelder U. 2015. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Res Vet Sci. 103:126–136. doi:10.1016/j.rvsc.2015.09.020.
  • Zhang S, Liu P, Wang Y, Shen Z, Wang S. 2021. Multiresistance gene cfr(C) in Clostridium perfringens of cattle origin from China. J Antimicrob Chemother. 76(12):3310–3312. doi:10.1093/jac/dkab339.
  • Zheng XL, Dou XM, Dao-Jun HU, Xiao Y, Zhao CR, Xue-Qin NI. 2010. The threat, prevention and control of Clostridium perfringens in cattle industry. China Animal Husbandry & Veterinary Medicine. 37(8):211–214.
  • Zhu L, Zhou W, Wang T, Xiang H, Ji X, Han Y, et al. 2017. Isolation of Clostridium perfringens type A from wild bharals (Pseudois nayaur) following sudden death in Tibet, China. Anaerobe. 44:20–22.