194
Views
6
CrossRef citations to date
0
Altmetric
Article

Coupling wavelet transform with multivariate adaptive regression spline for simulating suspended sediment load: Independent testing approach

, , &
Pages 356-365 | Received 09 Mar 2020, Accepted 23 Jul 2020, Published online: 04 Aug 2020

References

  • Adamowski, J., Chan, H.F., Prasher, S.O., and Sharda, V.N. (2012). “Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data.” J. Hydroinf., 14(3), 731–744.
  • Adamowski, J., and Sun, K. (2010). “Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds.” J. Hydrol., 390, 85–91.
  • Andres, J.D., Lorca, P., de Cos Juez, F.J., and Sánchez-Lasheras, F. (2010). “Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS).” Expert. Syst. Appl., 38, 1866–1875.
  • Atieh, M., Mehltretter, S.L., Gharabaghi, B., and Rudra, R. (2015). “Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins.” J. Hydrol., 531, 1095–1107.
  • Aytek, A., and Kisi, O. (2008). “A genetic programming approach to suspended sediment modeling.” J. Hydrol., 351, 288–298.
  • Bisoyi, N., Gupta, H., Padhy, N.P., and Chakrapani, G.J. (2019). “Prediction of daily sediment discharge using a back propagation neural network training algorithm: A case study of the Narmada River.” Int. J. Sediment Res, 34(2), 125–135.
  • Bogardi, J. (1974). Sediment transport in alluvial streams. Akademiai Kiado, Budapest Hungary, 486.
  • Bowden, G.J., Maier, H.R., and Dandy, G.C. (2005). “Input determination for neural network models in water resources applications. Part1- Background and methodologies.” J. Hydrol., 301, 75–92.
  • Friedman, J.H. (1991). “Multivariate adaptive regression splines.” Ann. Stat., 19, 1.
  • Ghose, D.K., and Samantaray, S. (2018). “Modelling sediment concentration using back propagation neural network and regression coupled with genetic algorithm.” Procedia Comput Sci, 125, 85–92.
  • Goyal, M.K. (2014). “Modeling of sediment yield prediction using M5 model tree algorithm and wavelet regression.” Water Resour.Manage., 28(7), 1991–2003.
  • Graf, R., Zhu, S., and Sivakumar, B. (2019). “Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach.” J. Hydrol., 578, 124115.
  • Himanshu, S.K., Pandey, A., and Yadav, B. (2017). “Ensemble wavelet-support vector machine approach for prediction of suspended sediment load using hydrometeorological data.” J. Hydrol. Eng, 22, 7.
  • Homaei, F., and Najafzadeh, M. (2020). “A reliability-based probabilistic evaluation of the wave-induced scour depth around marine structure piles.” Ocean Eng., 196, 106818.
  • Karim, M.F., and Kennedy, J.F. (1990). “Menu of coupled velocity and sediment-discharge relations for rivers.” J. Hydraul. Eng. ASCE, 116(8), 978–996.
  • Khosravi, K., Mao, L., Kisi, O., Yaseen, Z.M., and Shahid, S. (2018). “Quantifying hourly suspended sediment load using data mining models: Case study of a glacierized Andean catchment in Chile.” J. Hydrol., 567, 165–179.
  • Kisi, O. (2009). “Neural networks and wavelet conjunction model for in- termittent stream flow forecasting.” J. Hydrol. Eng., 14(8), 773–782.
  • Kisi, O. (2011). “Evapotranspiration modeling using a wavelet regression model.” Irrig. Sci., 29, 241–252.
  • Kisi, O., Hossein Zadeh Dalir, A., Cimen, M., and Shiri, J. (2012). “Suspended sediment modeling using genetic programming and soft computing techniques.” J. Hydrol., 450–451, 48–58.
  • Kisi, O., and Shiri, J. (2011). “Precipitation forecasting using wavelet- genetic programming and wavelet-neuro-fuzzy conjunction models.” Water Resour. Manage., 25(13), 3135–3152.
  • Kisi, O., and Shiri, J. (2012). “River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques.” Comput. Geosci., 43, 73–82.
  • Kisi, O., and Yaseen, Z.M. (2019). “The potential of hybrid evolutionary fuzzy intelligence model for suspended sediment concentration prediction.” Catena, 174, 11–23.
  • Liu, Q.J., Zhang, H.Y., Gao, K.T., Xu, B., Wu., J.Z., and Fang, N.F. (2019). “Time-frequency analysis and simulation of the watershed suspended sediment concentration based on the Hilbert-Huang transform (HHT) and artificial neural network (ANN) methods: A case study in the Loess Plateau of China.” Catena, 179, 107–118.
  • Londhe, S., and Narkhdehe, S. (2018). “Forecasting stream flow using hybrid neuro-wavelet technique.” ISH J. Hydraul. Eng., 24(3), 275–284.
  • Lopes, V.L., and Ffolliott, P.F. (1993). “Sediment rating curves for a clearcut Ponderosa Pine watershed in northern Arizona.” Water Resour. Bull., 29(3), 369–382.
  • Makarynskyy, O., Makarynska, D., Rayson, M., and Langtry, S. (2015). “Combining deterministic modelling with artificial neural networks for suspended sediment estimates.” Appl. Soft. Comput., 35, 247–256.
  • Mallat, S.G. (1989). “A theory for multi resolution signal decomposition: The wavelet representation.” IEEE Trans. Pattern Anal. Mach. Intell., 11(7), 674–693.
  • McBean, E., and Al-Nassri, S. (1988). “Uncertainty in suspended sediment transport curves.” J. Hydraul. Eng., 114, 63–74.
  • Najafzadeh, M. (2020). “Evaluation of conjugate depths of hydraulic jump in circular pipes using evolutionary computing.” Soft Comput., 23, 13375–13391.
  • Najafzadeh, M., and Kargar, A.R. (2019). “Gene-expression programming, evolutionary polynomial regression, and model tree to evaluate local scour depth at culvert outlets.” J. Pipeline Syst. Eng. Pract., 10, 3. doi: https://doi.org/10.1061/(ASCE)PS.1949-1204.0000376.
  • Najafzadeh, M., and Oliveto, G. (2020). “Riprap incipient motion for overtopping flows with machine learning models.” J. Hydroinf., doi: https://doi.org/10.2166/hydro.2020.129.
  • Nazafzadeh, M., and Zeinolabedini, M. (2018). “Derivation of optimal equations for prediction of sewage sludge quantity using wavelet conjunction models: An environmental assessment.” Environ. Sci. Pollut. Res., 25, 22931–22943.
  • Nourani, V., Alami, M.T., and Aminfar, M.H. (2009). “A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation.” Eng. Appl. Artif. Intell., 22(3), 466–472.
  • Nourani, V., Hosseini, A., Adamowski, J., and Kisi, O. (2014). “Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review.” J. Hydrol., 514, 358–377
  • Nourani, V., Kisi, O., and Komasi, M. (2011). “Two hybrid artificial intelligence approaches for modeling rainfall–runoff process.” J. Hydrol., 402, 41–59.
  • Nourani, V., Molaju, A., Davanlou Tajbaksh, A., and Najafi, H. (2019). “A wavelet based data miningt for suspended sediment load modeling.” Water Resour.Manage., 33(5), 1769–1784.
  • Partal, T., and Cigizoglu, H.K. (2008). “Estimation and forecasting of daily suspended sediment data using wavelet-neural networks.” J. Hydrol., 358(3–4), 317–331.
  • Partal, T., and Kisi, O. (2007). “Wavelet and neuro fuzzy conjunction model for precipitation forecasting.” J. Hydrol., 342, 199–212.
  • Peng, T., Zhou, J., Zhang, C., and Fu, W. (2017). “Streamflow forecasting using empirical wa- velet transform and artificial neural networks.” Water, 9(6), 406.
  • Rajaee, T. (2010). “Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction.” Clean-Soil Air Water, 38, 275–288.
  • Rajaee, T. (2011). “Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers.” Sci. Total Environ., 409, 2917–2928.
  • Rajaee, T., Nourani, V., Zounematkermani, M., and Kisi, O. (2011). “River suspended sediment load prediction: Application of ANN and wavelet conjunction model.” J. Hydrol. Eng., 16(8), 613–627.
  • Sadeghi, G., Najafzadeh, M., and Ameri, M. (2020). “Thermal characteristics of evacuated tube solar collectors with coil inside: An experimental study and evolutionary algorithms.” Renewable Energy, 151, 575–588.
  • Salih, S.Q., Sharafati, S.Q., Khosravi, K., Faris, H., Kisi, O., Tao, H., Ali, M., and Yaseen, Z.M. (2020). “River suspended sediment load prediction based on river discharge information: Application of newly developed data mining models.” J. Hydraul. Eng., 65(4), 624–637.
  • Samantaray, S., and Ghose, D.K. (2018). “Evaluation of suspended sediment concentration using descent neural networks.” Procedia Comput. Sci., 132, 1824–1831.
  • Sandy, R. (1990). Statistics for business and economics. McGraw-Hill Publishing, New York, 1117
  • Seo, Y., Kim, S., Kisi, O., Singh, V.P., and Parasuraman, K. (2016). “River stage forecasting using wavelet packet decomposition and machine learning models.” Water Resour. Manage., 30(11), 1–25.
  • Sharda, V., Prasher, S.O., Patel, R.M., Ojavasi, P.R., and Prakash, C. (2006). “Modeling runoff from middle Himalayan watersheds employing artificial intelligence techniques.” Agric. Water Manage., 83, 233–242.
  • Shiri, J. (2018). “Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology.” J. Hydrol., 561, 737–750.
  • Shiri, J. (2019). “Prediction vs. estimation of dewpoint temperature: Assessing GEP. MARS and RF models.” Hydrol. Res., 50(2), 633–643.
  • Shiri, J., and Kisi, O. (2010). “Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model.” J. Hydrol., 394(3–4), 486–493.
  • Shiri, J., and Kisi, O. (2012). “Estimation of daily suspended sediment load by using wavelet conjunction models.” ASCE J. Hydrol. Eng., 17(9), 986–1000.
  • Sivakumar, B. (2006). “Suspended sediment load estimation and the problem of inadequate data sampling: A fractal view.” Earth Surf. Proc. Land., 31, 414–427.
  • Tao, H., Keshtegar, B., and Yaseen, Z.M. (2019). “The feasibility of integrative radial basis M5Tree predictive model for river suspended sediment Load simulation.” Water Resour.Manage., 33, 4471–4490.
  • Tiyasha, T., Tung, T.M., and Yaseen, Z.M. (2020). “A survey on river water quality modelling using artificial intelligence models: 2000–2020.” J. Hydrol., 585, 124670.
  • Vanoni, V.A. (1971). “Sediment discharge formulas.” J. Hydraul. Div. ASCE, 97(4), 523–567.
  • Wang, W., Jin, J., and Li, Y. (2009). “Prediction of inflow at three Gorges dam in Yangtze River with wavelet network model.” Water Resour. Manage., 23(13), 2791–2803.
  • Yaseen, Z.M., Sulaiman, S.O., Deo, R.C., and Chau, K.W. (2019). “An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction.” J. Hydrol., 569, 387–408.
  • Zeinolabedini, M., and Najafzadeh, M. (2019). “Comparative study of different wavelet-based neural network models to predict sewage sludge quantity in wastewater treatment plant.” Environ. Monit. Assess., 191(2019), 163.
  • Zhang, J., Zhang, X., Niu, J., Hu, B.X., Soltanian, M.R., Qiu, H., and Yang, L. (2019). “Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model.” J. Hydrol., 577, 123948.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.