292
Views
1
CrossRef citations to date
0
Altmetric
Article

Numerical modeling of dam-break flood flows for dry and wet sloped beds

, & ORCID Icon
Pages 259-269 | Received 14 Apr 2021, Accepted 15 Feb 2022, Published online: 20 Mar 2022

References

  • Abdolmaleki, K., Thiagarajan, K., and Morris-Thomas, M. (2004). “Simulation of the dam break problem and impact flows using a Navier-Stokes solver.” Simulation, 13, 17.
  • Aliparast, M. (2009). “Two-dimensional finite volume method for dam-break flow simulation.” Int. J. Sediment. Res, 24, 99–107. doi:10.1016/S1001-6279(09)60019-6
  • Anderson, T.B., and Jackson, R. (1967). “Fluid mechanical description of fluidized beds. Equations of motion.” Ind. Eng. Chem, 6, 527–539. doi:10.1021/i160024a007
  • Beam, R.M., and Warming, R.F. (1976). “An implicit finite-difference algorithm for hyperbolic systems in conservation-law form.” J. Comput. Phys., 22, 87–110. doi:10.1016/0021-9991(76)90110-8
  • Beljadid, A., Mohammadian, A., and Kurganov, A. (2016). “Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows.” Comput. Fluids, 136, 193–206. doi:10.1016/j.compfluid.2016.06.005
  • Bell, S.W., Elliot, R.C., and Hanif Chaudhry, M. (1992). “Experimental results of two-dimensional dam-break flows.” J. Hydraul. Res, 30, 225–252. doi:10.1080/00221689209498936
  • Bellos, C. (2004). “Experimental measurements of flood wave created by a dam break.” European Water, 7, 3–15.
  • Bellos, C., Soulis, V., and Sakkas, J. (1992). “Experimental investigation of two-dimensional dam-break induced flows.” J. Hydraul. Res, 30, 47–63. doi:10.1080/00221689209498946
  • Biegowski, J., Paprota, M., and Sulisz, W. (2020). “Particle Image Velocimetry Measurements of Flow Over an Ogee-Type Weir in a Hydraulic Flume.” Int. J. Civ. Eng, 18, 1451–1462. doi:10.1007/s40999-020-00538-z
  • Bulat, M.P., and Bulat, P.V. (2013). “Comparison of turbulence models in the calculation of supersonic separated flows.” World. Appl. Sci. J, 27, 1263–1266.
  • Cable, M. (2009). “An evaluation of turbulence models for the numerical study of forced and natural convective flow in Atria.” Kingston, Ontario, Canada: Queen’s University.
  • Chanson, H. (2006a). Analytical solutions of laminar and turbulent dam break wave, River Flow 2006: Proc., Int. Conf. on Fluvial Hydraulics, Taylor and Francis, London, pp. 465–474.
  • Chanson, H. (2006b). “Tsunami surges on dry coastal plains: Application of dam break wave equations.” Coast. Eng. J, 48, 355–370. doi:10.1142/S0578563406001477
  • Crespo, A., Gómez-Gesteira, M., and Dalrymple, R.A. (2008). “Modeling dam break behavior over a wet bed by a SPH technique.” J. Waterw. Port, Coast. Ocean. Eng, 134, 313–320. doi:10.1061/(ASCE)0733-950X(2008)134:6(313)
  • Davidson, L. (2006). “Evaluation of the SST-SAS model: Channel flow, asymmetric diffuser and axi-symmetric hill, ECCOMAS CFD.” ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, 1–20.
  • Dressler, R.F. (1954). “Comparison of theories and experiments for the hydraulic dam-break wave.” Int. Assoc. Sci. Hydrology, 3, 319–328.
  • Dressler, R.F. (1958). “Unsteady non-linear waves in sloping channels.“ Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences , 247, 186–198. London, UK.
  • Feizi Khankandi, A., Tahershamsi, A., and Soares-Frazão, S. (2012). “Experimental investigation of reservoir geometry effect on dam-break flow.” J. Hydraul. Res, 50, 376–387. doi:10.1080/00221686.2012.690974
  • Fernandez-Feria, R. (2006). “Dam-break flow for arbitrary slopes of the bottom.” J. Eng. Math., 54, 319–331. doi:10.1007/s10665-006-9034-5
  • Fraccarollo, L., and Toro, E.F. (1995). “Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems.” J. Hydraul. Res, 33, 843–864. doi:10.1080/00221689509498555
  • Frazão, S.S., and Zech, Y. (2002). “Dam break in channels with 90 Bend.” J. Hydraul. Eng, 128, 956–968. doi:10.1061/(ASCE)0733-9429(2002)128:11(956)
  • Gabutti, B. (1983). “On two upwind finite-difference schemes for hyperbolic equations in non-conservative form.” Comput. Fluids, 11, 207–230. doi:10.1016/0045-7930(83)90031-2
  • Ghazizadeh, M.A., Mohammadian, A., and Kurganov, A. (2019). “An adaptive well-balanced positivity preserving scheme on quadtree grids for shallow water equations.“ Computers & Fluids . 208, 104633.
  • Hamlet, A.F., and Lettenmaier, D.P. (2007). “Effects of 20th century warming and climate variability on flood risk in the western US.” Water Resour Res, 43. doi:10.1029/2006WR005099
  • Hirt, C.W., and Nichols, B.D. (1981). “Volume of fluid (VOF) method for the dynamics of free boundaries.” J. Comput. Phys., 39, 201–225. doi:10.1016/0021-9991(81)90145-5
  • Holzmann, T., 2017. Mathematics, Numerics, Derivations and OpenFOAM (R), Holzmann CFD. Leoben, Austria. Retrieved from www.holzmann-cfd.de (2017).
  • Hooshyaripor, F., and Tahershamsi, A. (2015). “Effect of reservoir side slopes on dam-break flood waves.” Eng. Appl. Comput. Fluid. Mech, 9, 458–468. doi:10.1080/19942060.2015.1039630
  • Hunt, B. (1983). “Asymptotic solution for dam break on sloping channel.” J. Hydraul. Eng, 109, 1698–1706. doi:10.1061/(ASCE)0733-9429(1983)109:12(1698)
  • Imanian, H., and Mohammadian, A. (2019). “Numerical simulation of flow over ogee crested spillways under high hydraulic head ratio.” Eng. Appl. Comput. Fluid. Mech, 13, 983–1000. doi:10.1080/19942060.2019.1661014
  • Ismail, H., Ann Larocque, L., Bastianon, E., Hanif Chaudhry, M., and Imran, J. (2020). “Propagation of tributary dam-break flows through a channel junction.” J. Hydraul. Res 59(2), 214–223.
  • Juez, C., Soares-Frazao, S., Murillo, J., and García-Navarro, P. (2017). “Experimental and numerical simulation of bed load transport over steep slopes.” J. Hydraul. Res, 55, 455–469. doi:10.1080/00221686.2017.1288417
  • Kheirkhah Gildeh, H., Mohammadian, A., Nistor, I., Qiblawey, H., and Yan, X. (2016). “CFD modeling and analysis of the behavior of 30 and 45 inclined dense jets–new numerical insights.” J. Appl. Water Eng. Res, 4, 112–127. doi:10.1080/23249676.2015.1090351
  • Kocaman, S., and Ozmen-Cagatay, H. (2012). “The effect of lateral channel contraction on dam break flows: Laboratory experiment.” J. Hydrol, 432, 145–153. doi:10.1016/j.jhydrol.2012.02.035
  • LaRocque, L.A., Imran, J., and Chaudhry, M.H. (2013). “Experimental and numerical investigations of two-dimensional dam-break flows.” J. Hydraul. Eng, 139, 569–579. doi:10.1061/(ASCE)HY.1943-7900.0000705
  • Lauber, G., and Hager, W.H. (1998). “Experiments to dambreak wave: Horizontal channel.” J. Hydraul. Res., 36, 291–307. doi:10.1080/00221689809498620
  • Lee, C.H. (2018). “Rough boundary treatment method for the shear-stress transport k-ω model.” Eng. Appl. Comput. Fluid. Mech, 12(1), 261–269. doi:10.1080/19942060.2017.1410497
  • Li, X., and Zhao, J. (2018). “Dam-break of mixtures consisting of non-Newtonian liquids and granular particles.” Powder. Technol, 338, 493–505. doi:10.1016/j.powtec.2018.07.021
  • Lindblad, D., Jareteg, A., and Petit, O. (2014). “Implementation and run-time mesh refinement for the k− ω SST DES turbulence model when applied to airfoils.” Gothenburg, Sweden: Project work. Chalmers University of Technology.
  • Liu, X., Mohammadian, A., Sedano, J.Á.I., and Kurganov, A. (2017). “Three-dimensional shallow water system: A relaxation approach.” J. Comput. Phys., 333, 160–179. doi:10.1016/j.jcp.2016.12.030
  • Liu, W., Wang, B., Guo, Y., Zhang, J., and Chen, Y. (2020). “Experimental investigation on the effects of bed slope and tailwater on dam-break flows.” J. Hydrol, 590, 125256. doi:10.1016/j.jhydrol.2020.125256
  • Mangeney, A., Heinrich, P., and Roche, R. (2000). “Analytical solution for testing debris avalanche numerical models.” Pure. Appl. Geophys, 157, 1081–1096. doi:10.1007/s000240050018
  • Meile, T., Boillat, J.-L., and Schleiss, A.J. (2013). “Propagation of surge waves in channels with large-scale bank roughness.” J. Hydraul. Res, 51, 195–202. doi:10.1080/00221686.2012.738876
  • Menter, F.R., Kuntz, M., and Langtry, R. (2003). “Ten years of industrial experience with the SST turbulence model.” Turbulence, Heat and Mass Transfer, 4, 625–632.
  • Miller, S., and Hanif Chaudhry, M. (1989). “Dam-break flows in curved channel.” J. Hydraul. Eng, 115, 1465–1478. doi:10.1061/(ASCE)0733-9429(1989)115:11(1465)
  • Mingham, C., and Causon, D. (1998). “High-resolution finite-volume method for shallow water flows.” J. Hydraul. Eng, 124, 605–614. doi:10.1061/(ASCE)0733-9429(1998)124:6(605)
  • Mohammadian, A., Le Roux, D., and Tajrishi, M. (2007). “A conservative extension of the method of characteristics for 1-D shallow flows.” Appl. Math. Model., 31, 332–348. doi:10.1016/j.apm.2005.11.018
  • Mohsenabadi, S.E., Mohammadian, M., Nistor, I., and Gildeh, H.K. (2019). CFD modelling of near-field dam break flow, Sustainable and Safe Dams Around the World/Un monde de barrages durables et sécuritaires: Proceedings of the ICOLD 2019 Symposium,(ICOLD 2019), June 9-14, 2019 Publications du symposium CIGB 2019, Ottawa, Canada. CRC Press, p. 47.
  • Montazerin, N., Akbari, G., and Mahmoodi, M. (2015). “Developments in turbomachinery flow: Forward curved centrifugal fans.” Sawston, United Kingdom: Woodhead Publishing.
  • Mungkasi, S., and Roberts, S.G. (2010). “A new analytical solution for testing debris avalanche numerical models.” ANZIAM. J, 52, 349–363.
  • Novák, P., Moffat, A., Nalluri, C., and Narayanan, R. (2007). “Hydraulic structures.” England: CRC Press.
  • Ozmen-Cagatay, H., and Kocaman, S. (2010). “Dam-break flows during initial stage using SWE and RANS approaches.” J. Hydraul. Res, 48, 603–611. doi:10.1080/00221686.2010.507342
  • Ozmen-Cagatay, H., Kocaman, S., and Guzel, H. (2014). “Investigation of dam-break flood waves in a dry channel with a hump.” J. Hydro-Environ. Res, 8, 304–315. doi:10.1016/j.jher.2014.01.005
  • Plate, E.J. (2002). “Flood risk and flood management.” J. Hydrol, 267, 2–11. doi:10.1016/S0022-1694(02)00135-X
  • Quecedo, M., Pastor, M., Herreros, M., Merodo, J.F., and Zhang, Q. (2005). “Comparison of two mathematical models for solving the dam break problem using the FEM method.” Comput. Methods Appl. Mech. Eng., 194, 3984–4005. doi:10.1016/j.cma.2004.09.011
  • Ritter, A. (1892). “Die fortpflanzung der wasserwellen.” Zeitschrift des Vereines Deutscher Ingenieure, 36, 947–954.
  • Schmidgall, T., and Strange, J., 1960. Floods resulting from suddenly breached dams. Miscellaneous Paper, 2–374.
  • Shaheed, R., Mohammadian, A., and Gildeh, H.K. (2019). “A comparison of standard k–ε and realizable k–ε turbulence models in curved and confluent channels.” Environ. Fluid. Mech, 19, 543–568. doi:10.1007/s10652-018-9637-1
  • Shigematsu, T., Liu, P.L.-F., and Oda, K. (2004). “Numerical modeling of the initial stages of dam-break waves.” J. Hydraul. Res, 42, 183–195.
  • Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., and Zhu, J. (1995). “A new k-ϵ eddy viscosity model for high reynolds number turbulent flows.” Comput Fluids, 24, 227–238. doi:10.1016/0045-7930(94)00032-T
  • Shirkhani, H., Mohammadian, A., Seidou, O., and Kurganov, A. (2016). “A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids.” Comput. Fluids, 126, 25–40. doi:10.1016/j.compfluid.2015.11.017
  • Stansby, P., Chegini, A., and Barnes, T. (1998). “The initial stages of dam-break flow.” J. Fluid. Mech, 374, 407–424. doi:10.1017/S0022112098001918
  • Stoker, J. (1957). Water waves Interscience Publishers. Inc, New York.
  • Taheri, M., Dolatabadi, N., Nasseri, M., Zahraie, B., Amini, Y., and Schoups, G. (2020). “Localized linear regression methods for estimating monthly precipitation grids using elevation, rain gauge, and TRMM data.” Theor. Appl. Climatol., 142(1), 623–641. doi:10.1007/s00704-020-03320-2
  • Taylor, K.E. (2001). “Summarizing multiple aspects of model performance in a single diagram.” J. Geophys. Res. Atmos, 106, 7183–7192. doi:10.1029/2000JD900719
  • Van Emelen, S., Zech, Y., and Soares Frazao, S. (2014). “Limitations of the shallow water assumptions for problems involving steep slopes: Application to a dike overtopping test case.“ River Flow 1.
  • Vosoughi, F., Rakhshandehroo, G., Nikoo, M.R., and Sadegh, M. (2020). “Experimental study and numerical verification of silted-up dam break.” J. Hydrol, 590, 125267. doi:10.1016/j.jhydrol.2020.125267
  • Wang, B., Chen, Y., Peng, Y., Zhang, J., and Guo, Y. (2020a). “Analytical Solution of Shallow Water Equations for Ideal Dam-Break Flood along a Wet-Bed Slope.” J. Hydraul. Eng, 146, 06019020. doi:10.1061/(ASCE)HY.1943-7900.0001683
  • Wang, B., Chen, Y., Wu, C., Peng, Y., Song, J., Liu, W., and Liu, X. (2018). “Empirical and semi-analytical models for predicting peak outflows caused by embankment dam failures.” J. Hydrol, 562, 692–702. doi:10.1016/j.jhydrol.2018.05.049
  • Wang, B., Liu, W., Zhang, J., Chen, Y., Wu, C., Peng, Y., Wu, Z., Liu, X., and Yang, S. (2020b). “Enhancement of semi-theoretical models for predicting peak discharges in breached embankment dams.” Environ. Fluid. Mech 20(4) 885–904.
  • Wang, J.S., Ni, H.-G., and He, Y.-S. (2000). “Finite-difference TVD scheme for computation of dam-break problems.” J. Hydraul. Eng, 126, 253–262. doi:10.1061/(ASCE)0733-9429(2000)126:4(253)
  • Wang, W., and Wang, M., 2011. “Application of KE Model on the Numerical Simulation of a Semi-confined Slot Turbulent Impinging Jet,“ 2011 Fourth International Joint Conference on Computational Sciences and Optimization. Kunming, Yunnan, China: IEEE, 86–89.
  • Weller, H.G., Tabor, G., Jasak, H., and Fureby, C. (1998). “A tensorial approach to computational continuum mechanics using object-oriented techniques.” Comput. Phys, 12, 620–631. doi:10.1063/1.168744
  • Wood, A., and Wang, K.-H. (2015). “Modeling dam-break flows in channels with 90 degree Bend using an alternating-direction implicit based curvilinear hydrodynamic solver.” Comput. Fluids, 114, 254–264. doi:10.1016/j.compfluid.2015.03.011
  • Wu, W., and Wang, S.S. (2007). “One-dimensional modeling of dam-break flow over movable beds.” J. Hydraul. Eng, 133, 48–58. doi:10.1061/(ASCE)0733-9429(2007)133:1(48)
  • Yang, X., Xu, W.-L., Luo, S.-J., Chen, H.-Y., Li, N.-W., and Xu, L.-J. (2011). “Experimental study of dam-break flow in cascade reservoirs with steep bottom slope.” J. Hydrodynam. B, 23, 491–497. doi:10.1016/S1001-6058(10)60140-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.