44
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effects of fuzzy harvesting on logistic growth models for uncertain ecological parameter

, &
Pages 433-451 | Received 01 Aug 2013, Published online: 01 Jul 2016

References

  • P. F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Mathematique et Physique, 10 (1838), 113–117.
  • K. Chakraborty, S. Jana, T. K. Kar, Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting, Appl. Math. Comput., 218 (2012), 9271–9290.
  • X. Zhang, Z. Shuai, K. Wang, Optimal impulsive policy for single population, Nonlinear Anal. Real World Appl., 4 (2003), 639–651. doi: 10.1016/S1468-1218(02)00084-6
  • T. K. Kar, K. S. Chaudhuri, Regulation of a prey-predator fishery by taxation, Int. J. Math. Educ. Sci. Technol., 34(3) (2003), 403–416. doi: 10.1080/0020739031000078730
  • T. K. Kar, A. Ghorai, Dynamic behavior of a delayed predator-prey model with harvesting, Appl. Math. Comput., 217 (2011), 9085–9104.
  • L. Berezansky, E. Braverman, L. Idels, Delay differential logistic equation with harvesting, Math. Comput. Model., 40 (2004), 1509–1525. doi: 10.1016/j.mcm.2005.01.008
  • T. K. Kar, Controllability and optimal harvesting of a prey-predator model incorporating a prey refuge, Int. J. Math. Edu. Sci. Technol., 37(5) (2006), 559–571. doi: 10.1080/00207390600598011
  • S. Chakraborty, S. Pal, N. Bairagi, Dynamics of a ratio-dependent ecoepidemiological system with prey harvesting, Nonlinear Anal. Real World Appl., 11 (2010), 1862–1877. doi: 10.1016/j.nonrwa.2009.04.009
  • R. M. Etoua, C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III, J. Differ. Equ., 249 (2010), 2316–2356. doi: 10.1016/j.jde.2010.06.021
  • J. Jiao, S. Cai, L. Chen, Analysis of a stage-structured predator-prey system with birth pulse and impulsive harvesting at different moments, Nonlinear Anal. Real World Appl., 12 (2011), 2232–2244. doi: 10.1016/j.nonrwa.2011.01.005
  • B. Leard, J. Rebaza, Analysis of predator-prey models with continuous threshold harvesting, Appl. Math. Comput., 217 (2011), 5265–5278.
  • A. R. Palma, E. G. Olivares, Optimal harvesting in a predator--prey model with Allee effect and sigmoid functional response, Appl. Math. Model., 36 (2012), 1864–1874. doi: 10.1016/j.apm.2011.07.081
  • J. F. M. Al-Omari, S. K. Q. Al-Omari, Global stability inastructured population competition model with distributed maturation delay and harvesting, Nonlinear Anal. Real World Appl., 12 (2011), 1485–1499. doi: 10.1016/j.nonrwa.2010.10.008
  • M. Ghosh, Modeling prey-predator type fishery with reverse area, Int. J. Biomath., 3 (2010), 351–365. doi: 10.1142/S1793524510000982
  • B. Dubey, P. Chandra, P. Sinha, A resource dependent fishery model with optimal harvesting policy, J. Biol. Systems, 10 (2002), 1–13. doi: 10.1142/S0218339002000494
  • Z. Luo, Optimal control for a predator-prey system with age dependent, Int. J. Biomath., 2 (2009), 45–59. doi: 10.1142/S1793524509000467
  • S. A. Khamis, J. M. Tchuenche, M. Lukka, M. Heiliö, Dynamics of fisheries with prey reserve and harvesting, Int. J. Comput. Math., 88 (2011), 1776–1802. doi: 10.1080/00207160.2010.527001
  • L. Yunfei, P. Yongzhen, G. Shujing, L. Changguo, Harvesting of a phytoplankton -zooplankton model, Nonlinear Anal. Real World Appl., 11 (2010), 3608–3619. doi: 10.1016/j.nonrwa.2010.01.007
  • J. Rebaza, Dynamics of prey threshold harvesting and refuge, J. Comput. Appl. Math., 236 (2012), 1743–1752. doi: 10.1016/j.cam.2011.10.005
  • K. Chakraborty, T. K. Kar, Economic perspective of marine reserves in fisheries: A bioeconomic model, Math. Biosci., 240 (2012), 212–222. doi: 10.1016/j.mbs.2012.07.008
  • A. M. A. El-Sayed, M.E. Nasr, Existence of uniformly stable solutions of nonautonomous discontinuous dynamical systems, J. Egyptian Math. Soc., 19 (2011), 91–94. doi: 10.1016/j.joems.2011.09.006
  • D. Ludwig, D. Jones, C. S. Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and forest, J. Anim. Ecol., 47 (1978), 315–352. doi: 10.2307/3939
  • C. S Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Can. Entromol., 91 (1959), 293–320. doi: 10.4039/Ent91293-5
  • J. M. Fryxell, C. Packer, K. Mccann, E. J. Solberg, B. Saether, Resource management and sustainability of harvested wildlife population, Sci., 328 (2010), 903–906. doi: 10.1126/science.1185802
  • X. Zhang, Z. Shuai, K. Wang, Optimal impulsive harvesting policy for single population, Nonlinear Anal. Real World Appl., 4 (2003), 639–651. doi: 10.1016/S1468-1218(02)00084-6
  • E. Liz, P. Pilarczyk, Global dynamics in a stage-structured discretetime population model with harvesting, J. Theor. Biol., 297 (2012), 148–165. doi: 10.1016/j.jtbi.2011.12.012
  • O. D. Makinde, Solving ratio-dependent predator-prey system with constant effort harvesting using Adomian decomposition method, Appl. Math. Comput., 186 (2007), 17–22.
  • W. Li, K. Wang, Optimal harvesting policy for general stochastic logistic population model, J. Math. Anal. Appl. 368 (2010), 420–428. doi: 10.1016/j.jmaa.2010.04.002
  • Y. Zhijian, X. Shengli, Y. Nengfu, Dynamics of cooperative predator-prey system with impulsive effects and Beddington--DeAngelis functional response, J. Egyptian Math. Soc., (2013), http://dx.doi. org/10.1016/j.joems.2013.04.008.
  • G. Gilioli, S. Pasquali, F. Ruggeri, Nonlinear functional response parameter estimation in a stochastic predator-prey model, Math. Biosci. Eng., 9 (2012), 75–96. doi: 10.3934/mbe.2012.9.75
  • A. Maiti, M. M. Jana, G. P. Samanta, Deterministic and stochastic analysis of a ratio-dependent predator-prey system with Delay, Nonlinear anal. Model. Control, 12 (2007), 383–398.
  • A. Maiti and G. P. Samanta, Deterministic and stochastic analysis of a prey-dependent predator-prey system, Int. J. Math. Educ. Sci. Technol., 36 (2005), 65–83. doi: 10.1080/00207390412331314980
  • M. Bandyopadhyay, C. G. Chakrabarty, Deterministic and stochastic analysis of a nonlinear prey-predator system, J. Biol. Syst., 11 (2003), 161–172. doi: 10.1142/S0218339003000816
  • G. P. Samanta, The effects of random fluctuating environment on interacting species with time delay, Int. J. Math. Edu. Sci.Technol., 27(1) (1996), 13–21. doi: 10.1080/0020739960270102
  • G. P. Samanta, Influence of environmental noises on Gomatam model of interacting species, Ecol. Model., 91 (1996), 283–291. doi: 10.1016/0304-3800(95)00195-6
  • Prajneshu, A stochastic prey-predator model with time delay, Math. Biosci. 52 (1980), 217–280.
  • L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X
  • R. C. Bassanezi, L. C. Barros, A. Tonelli, Attractors and asymptotic stability for fuzzy dynamical systems. Fuzzy Sets and Systems., 113 (2000), 473–483. doi: 10.1016/S0165-0114(98)00142-0
  • M. Gou, X. Xu, R. Li, Impulsive functional differential inclusions and fuzzy population models, Fuzzy Sets and Systems., 138 (2003), 601–615. doi: 10.1016/S0165-0114(02)00522-5
  • L. C. Barros, R. C. Bassanezi, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model., 128 (2000), 27–33. doi: 10.1016/S0304-3800(99)00223-9
  • M. Peixoto, L. C. Barros, R. C. Bassanezi, Predator-prey fuzzy model, Ecol. Model., 214 (2008), 39–44. doi: 10.1016/j.ecolmodel.2008.01.009
  • D. Pal, G. S. Mahapatra, G. P. Samanta, A proportional harvesting dynamical model with fuzzy intrinsic growth rate and harvesting quantity, Pacific-Asian J. Math., 6 (2012), 199–213.
  • D. Pal, G. S. Mahapatra, G. P Samanta, Quota harvesting model for a single species population under fuzziness. Int. J. Math. Sci., 12 (2013), 33–46.
  • D. Pal, G. S. Mahapatra, G. P. Samanta, Optimal harvesting of prey-predator system with interval biological parameters: A bioeconomic model, Math. Biosci., 241 (2013), 181–187. doi: 10.1016/j.mbs.2012.11.007
  • S. H. Chen, Operations on fuzzy numbers with function principal, Tamkang J. Manag. Sci., 6 (1985), 13–25.
  • G. S. Mahapatra,: T. K. Roy,: Fuzzy multi-objective mathematical programming on reliability optimization model, Appl. Math. Comput., 174 (2006), 643–659.
  • V. A. Kostitzin, Biologie Mathematique, Paris, Armond Colin, 1937.
  • S. H. Strogatz, Nonlinear dynamics and chaos. Reading, Massachhu-setts, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.