32
Views
4
CrossRef citations to date
0
Altmetric
Articles

A numerical treatment of the delayed Ambartsumian equation over large interval

, , &
Pages 1077-1091 | Received 01 May 2019, Published online: 25 May 2020

References

  • Algehyne, E. A., El-Zahar, E. R., Alharbi, F. M., Ebaid, A., and and (2020). Development of analytical solution for a generalized ambartsumian equation. AIMS Mathematics, 5(1):249–258. doi: 10.3934/math.2020016
  • Ambartsumian, V. (1944). On the fluctuation of the brightness of the Milky Way, volume 44. Doklady Akad. Nauk USSR.
  • Bakodah, H. and Ebaid, A. (2018). Exact solution of ambartsumian delay differential equation and comparison with daftardar-gejji and jafari approximate method. Mathematics, 6(12):331. doi: 10.3390/math6120331
  • Bhrawy, A., Tohidi, E., and Soleymani, F. (2012). A new bernoulli ma1 40 trix method for solving high-order linear and nonlinear fredholm integrodifferential-differenceerential equations with piecewise intervals. Appl. Math. Comput., 219:482–497.
  • Bicer, K. and Yalcinbas, S. (2017). Numerical solutions for helmholtz equations using bernoulli polynomials. AIP Conference Proceedings, 300021.
  • Calvert, V. and Razzaghi, M. (2017). Solutions of the blasius and mhd falkner-skan boundary-layer equations by modified rational bernoulli functions. Internat. J. Numer. Methods Heat Fluid Flow, 27:1–26. doi: 10.1108/HFF-05-2016-0190
  • D. Kumar, J. Singh, D. B. and Rathore, S. (2018). Analysis of a fractional model of the ambartsumian equation. Eur. Phys. J. Plus, 133.
  • E. Tohidi, K. Erfani, M. G. and Shateyi, S. (2013). A new tau method for solving nonlinear lane-emden type equations via bernoulli operational matrix of differentiation. J. Appl. Math.
  • El-Gamel, M., Adel, W., and El-Azab, M. S. (2018). Two very accu1 55 rate and efficient methods for solving time-dependent problems. Applied Mathematics, 09(11):1270–1280. doi: 10.4236/am.2018.911083
  • El-Gamel, M., Adel, W., and El-Azab, M. S. (2019). Bernoulli polynomial and the numerical solution of high-order boundary value problems. Mathematics in Natural Science, 04(01):45–59. doi: 10.22436/mns.04.01.05
  • Erdem, K., Yalcinbas, S., and Sezer, M. (2013). A bernoulli polynomial approach with residual correction for solving mixed linear fredholm integro-differential-difference equations. Int. J. Difference Equ.
  • F. Mirzaee, N. S. and Hoseini, S. (2017). A new scheme for solving nonlinear stratonovich volterra integral equations via bernoullis approxi1 65 mation. Appl. Anal., 96(13):2163–2179. doi: 10.1080/00036811.2016.1208815
  • Golbabai, A. and Panjeh, S. (2015). An efficientcient method based on operational matrices of bernoulli polynomials for solving matrix differential equations. Comp. Appl. Math., 34:159–175.
  • Hesameddini, E. and Riahi, M. (2018). Bernoulli galerkin matrix method 170 and its convergence analysis for solving system of volterrafredholm integrodi fferential equations. Iran J Sci Technol Trans Sci.
  • K. Parand, H. Y. and Delokshi, M. (2017). A numerical approachto solve lane-emden type eqautions by he fractional order rational bernoulli functions. Romanian J. Phys., 62:1–24.
  • K. Rabiei, Y. O. and Babolian, E. (2018). Numerical solution of 1d and 2d fractional optimal control of system via bernoulli polynomials. Int. J. Appl. Comput. Math, 4. doi: 10.1007/s40819-017-0435-0
  • M, E. G., W, A., and MS, E. A. (2018). Collocation method based on bernoulli polynomial and shifted chebychev for solving the bratu equation. Journal of Applied & Computational Mathematics, 07(03).
  • M. Mohsenyzadeh, K. M. and Ezzati, R. (2015). A numerical approach for the solution of a class of singular boundary value problems arising in physiology. Adv. Difference Equ.
  • Mirzaee, F. and Bimesl, S. (2014). An effcient numerical approach for solving systems of high-order linear volterra integral equations. Scientia Iranica, 21:2250–2263.
  • Napoli, A. (2016). Solutions of linear second order initial value problems by using bernoulli polyno mials. Appl. Numer. Math., 99:109–120. doi: 10.1016/j.apnum.2015.08.011
  • P. Rahimkhani, R. M. (2018). Numerical solution of the fractional order 190 duffingvan der pol oscillator equation by using bernoulli wavelets collocation method. Int. J. Appl. Comput. Math., 4.
  • P. Rahimkhani, Y. O. and Babolianc, E. (2017). Application of fractional-order bernoulli functions for solving fractional riccati dierential equation. Int. J. Nonlinear Anal. Appl., 8:277–292.
  • Patade, J. and Bhalekar, S. (2017). On analytical solution of ambartsumian equation. Natl. Acad. Sci. Lett., 40:291–293. doi: 10.1007/s40009-017-0565-2
  • Rahimkhani, P., Ordokhani, Y., and Babolian, E. (2017). Numerical solution of fractional pantograph differential equations by using generalized fractional-order bernoulli wavelet. Journal of Computational and Applied Mathematics, 309:493–510. doi: 10.1016/j.cam.2016.06.005
  • Ren, Q. and Tian, H. (2016). Numerical solution of the static beam problem by bernoulli collocation method. Appl. Math. Model., 40:8886–8897. doi: 10.1016/j.apm.2016.05.018
  • S. Singh, V. Patel, V. S. and Tohidi, E. (2018). Application of bernoulli 205 matrix method for solving two-dimensional hyperbolic telegraph equations with dirichlet boundary conditions. Compu. Math. Appl., 75:2280–2295.
  • Sahu, P. and SahaRay, S. (2017). A new bernoulli wavelet method for accurate solutions of nonlinear fuzzy hammersteinvolterra delay integral equations. Fuzzy Sets and Systems, 309:131–144. doi: 10.1016/j.fss.2016.04.004
  • Tohidi, E., A. Bhrawy, and Erfani, K. (2013a). A collocation method based on bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model., 37:4283–4294. doi: 10.1016/j.apm.2012.09.032
  • Tohidi, E., Bhrawy, A., and Erfani, K. (2013b). A collocation method based on bernoulli operational matrix for numerical solution of generalized pantograph equation. Applied Mathematical Modelling, 37(6):4283–4294. doi: 10.1016/j.apm.2012.09.032
  • Tohidi, E. and Kiliman, A. (2013). A collocation method based on the bernoulli operational matrix for solving nonlinear bvp’s which arise from the problems in calculus of variation. Math. Problems. Eng.
  • Toutounian, F. and Tohidi, E. (2013). A new bernoulli matrix method 220 for solving second order linear partial differential equations with the convergence analysis. Appl. Math. Comput., 223:298–310.
  • V. Calvert, S. M. and Razzaghia, M. (2015). Solution of laneemden type equations using rational bernoulli functions. Num. Meth. Appl. Sci.
  • Viki, T. (1976). On an exact solution of the ambartsumian equation. pages 47–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.