48
Views
6
CrossRef citations to date
0
Altmetric
Articles

Chaotic step length artificial bee colony algorithms for protein structure prediction

ORCID Icon, , , &

References

  • Dill, K. A. , Bromberg, S. , Yue, K. , Chan, H. S. , Ftebig, K. M. , Yee, D. P. , & Thomas, P. D. (1995). Principles of protein folding—a perspective from simple exact models. Protein science, 4(4), 561-602. doi: 10.1002/pro.5560040401
  • Stillinger, F. H. , Head-Gordon, T. , & Hirshfeld, C. L. (1993). Toy model for protein folding. Physical review E , 48 (2), 1469. doi: 10.1103/PhysRevE.48.1469
  • Karaboga, D. , & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization , 39 (3), 459-471. doi: 10.1007/s10898-007-9149-x
  • Jana, N. D. , Sil, J. , & Das, S. (2017). Selection of appropriate metaheuristic algorithms for protein structure prediction in AB off-lattice model: a perspective from fitness landscape analysis. Information Sciences , 391 , 28-64. doi: 10.1016/j.ins.2017.01.020
  • Li, B. , Li, Y. , & Gong, L. (2014). Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model. Engineering Applications of Artificial Intelligence , 27 , 70-79. doi: 10.1016/j.engappai.2013.06.010
  • Li, B. , Chiong, R. , & Lin, M. (2015). A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model. Computational biology and chemistry , 54 , 1-12. doi: 10.1016/j.compbiolchem.2014.11.004
  • You, Xuemei , Yinghong Ma , and Zhiyuan Liu . “A novel artificial bee colony based on Gaussian sampling.” Journal of Discrete Mathematical Sciences and Cryptography 20.4 (2017): 957-970. doi: 10.1080/09720529.2017.1359379
  • Jana, N. D. , Sil, J. , & Das, S. (2017, February). An improved harmony search algorithm for protein structure prediction using 3D off-lattice model. In International Conference on Harmony Search Algorithm (pp. 304-314). Springer, Singapore . doi: 10.1007/978-981-10-3728-3_30
  • Zhou, C. , Sun, C. , Wang, B. , & Wang, X. (2018). An improved stochastic fractal search algorithm for 3D protein structure prediction. Journal of molecular modeling , 24 (6), 125. doi: 10.1007/s00894-018-3644-5
  • Bošković, B. , & Brest, J. (2018). Protein folding optimization using differential evolution extended with local search and component reinitialization. Information Sciences , 454 , 178-199. doi: 10.1016/j.ins.2018.04.072
  • Dash, T. , & Sahu, P. K. (2015). Gradient gravitational search: an efficient metaheuristic algorithm for global optimization. Journal of computational chemistry , 36 (14), 1060-1068. doi: 10.1002/jcc.23891
  • Sharma, N. , Sharma, H. , & Sharma, A. (2018). Beer froth artificial bee colony algorithm for job-shop scheduling problem. Applied Soft Computing , 68 , 507-524. doi: 10.1016/j.asoc.2018.04.001
  • Sharma, N. , Sharma, H. , & Sharma, A. (2019). An effective solution for large scale single machine total weighted tardiness problem using lunar cycle inspired artificial bee colony algorithm. IEEE/ACM transactions on computational biology and bioinformatics .
  • Saxena, A. , Kumar, R. , & Das, S. (2019). β-Chaotic map enabled grey wolf optimizer. Applied Soft Computing , 75 , 84-105. doi: 10.1016/j.asoc.2018.10.044
  • Saxena, A. , & Kumar, R. (2020). Chaotic Variants of Grasshopper Optimization Algorithm and Their Application to Protein Structure Prediction. In Applied Nature-Inspired Computing: Algorithms and Case Studies (pp. 151-175). Springer, Singapore .
  • Saxena, A. (2019). A comprehensive study of chaos embedded bridging mechanisms and crossover operators for grasshopper optimisation algorithm. Expert Systems with Applications , 132 , 166-188. doi: 10.1016/j.eswa.2019.04.043
  • Saxena, A. , Shekhawat, S. , & Kumar, R. (2018). Application and development of enhanced chaotic grasshopper optimization algorithms. Modelling and Simulation in Engineering , 2018 . doi: 10.1155/2018/4945157
  • Mirjalili, S. , & Gandomi, A. H. (2017). Chaotic gravitational constants for the gravitational search algorithm. Applied soft computing , 53 , 407-419. doi: 10.1016/j.asoc.2017.01.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.