58
Views
0
CrossRef citations to date
0
Altmetric
Articles

Humic Acids from Vermicompost and Eucalyptus urograndis Essential Oil: Biological Activity on Stylosanthes guianensis (Leguminosae) Seedlings

, , , ORCID Icon, &
Pages 1322-1332 | Received 24 Apr 2019, Accepted 22 Oct 2019, Published online: 12 Dec 2019

References

  • Williams, R.J., Reid, R., Schultze-Kraft, R., Souza Costa, N.M. and Thomas, BD. (1984). Natural distribution of Stylosanthes. Em: Stace HM, Edye LA, editors. The biology and agronomy of Stylosanthes. Sydney: Academic Press. 73-101.
  • Calles, T. and Schultze-Kraft, R. (2010). Stylosanthes (Leguminosae, Dalbergieae) of Venezuela. Willdenowia. 40: 305-329. doi: 10.3372/wi.40.40211
  • Grof, B., Schultze-Kraft, R. and Muller, F. (1979). Stylosanthes capitata Vog., some agronomic attributes, and resistance to anthracnose (Colletotrichum gloeosporioides Penz.). Trop Grassl. 13: 28-37.
  • Costa, N.M.S. and Ferreira, M.B. (1984). Some Brazilian species of Stylosanthes. In: Stace HM, Edye LA, editors. The biology and agronomy of Stylosanthes. Sydney: Academic Press. 53-101.
  • Edye, L.A. (1987). Potential of Stylosanthes for improving tropical grasslands. Outlook Agric. 16: 124-30. doi: 10.1177/003072708701600305
  • Reddy, N.V., Das, R.B., Rao, D.G. and Korwar, G.R. (1989). Role of stylo legume (S. hamata) in improving soil fertility and crop production in Alfisols of semiarid tropics. Ind. J. Dryland Agric. Res. Dev. 4: 48-54.
  • Clericuzio, M., Burlando, B., Borghesi, B., Salis, A., Damonte, G., Ribulla, S. and Cornara L. (2017). Antiproliferative hydroxy-fatty acids from the fodder legume Stylosanthes guianensis. J. Pharmaceut. Biomed. 141: 157-164. doi: 10.1016/j.jpba.2017.04.017
  • Ramos, A.K.B., Braga, G.J., Maciel, G.A., Soares, J.P.G., da Fonseca, C.E.L., Fernandes, F.D., Fernandes, C.D. and Carvalho, M.A. (2018). Agronomic Evaluation of high seed yield genotypes of Stylosanthes guianensis for clayey soils in cerrado. XXVIII Brazilian congress of zootechnics 2018. Centro de Convenções da PUC-GO, Goiana-GO.
  • Costa, N.L., Paulino, V.T., Gianluppi, V., Bendahan, A.B. and MagalhaÞes, J.A.(2018). Response of Stylosanthes capitata cv Lavradeiro to potassium level. Pubvet. 12: 1-5.
  • Chakravarty, N., Shukla, A., Kumar, A., Dhyani, S.K. and Nagori, T. (2017). Effect of arbuscular mycorrhizal inoculation on growth of Stylosanthes seabrana. Range Mgmt. & Agroforestry. 38: 139-142.
  • Dong, R., Zhang, J., Huan, H., Bai, C., Chen, Z. and Liu, G. (2017). High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis. Int. J. Mol. Sci. 18: 1625-1642. doi: 10.3390/ijms18081625
  • Pourhadi, M., Badi, H.N., Mehrafarin, A., Omidi, H. and Hajiaghaee, R. (2018). Hytochemical and growth responses of Mentha piperita to foliar application of biostimulants under greenhouse and field conditions. Herba Pol. 64(2): 1-12. doi: 10.2478/hepo-2018-0010
  • Steffen, R.B., Antoniolli, Z.I., Steffen, G.P.K. (2010). Stimulatory effect of eucalyptus essential oil on the germination and early growth of Eucalyptus grandis seedlings. Braz. J. For Research. 63: 199-206.
  • Steffen, R.B., Antoniolli, Z.I., Steffen, G.P.K., Jacques, R.J.S., Eckardt, D.P., dos Santos, M.L. and Santana, N.A. (2011). Essential oil of Eucalyptus grandis effect on the growth of ectomycorrhizal isolates in different copper, zinc and nickel concentrations. Pesq. Flor. Bras. 31: 227-234. doi: 10.4336/2011.pfb.31.67.227
  • Batish, D.R., Singh, H.P., Kohli, R.K. and Kaur, S. (2008). Eucalyptus essential oil as a natural pesticide. Forest Ecol. Manag. 256: 2166-2174. doi: 10.1016/j.foreco.2008.08.008
  • Dobbss, L.B., dos Santos, T.C., Pittarello, M., de Souza, S.B., Ramos, A.C. and Busato, J.G. (2018). Alleviation of iron toxicity in Schinus terebinthifolius Raddi (Anacardiaceae) by humic substances. Environ. Sci. Pollut. Res. 25: 9416-9425. doi: 10.1007/s11356-018-1193-1
  • Bassolé, I.H.N. and Juliani, H.R. (2012). Essential Oils in Combination and their antimicrobial properties. Molecules. 17: 3989-4006. doi: 10.3390/molecules17043989
  • Wink, M. (1999). Functions of Plant Secondary Metabolites and Their Exploitation in Biotechnology; Sheffield Academic Press: Sheffield, UK.
  • Dorman, H.J.D. and Deans, S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88: 308-316. doi: 10.1046/j.1365-2672.2000.00969.x
  • Mahumane, G., van Vuuren, S., Viljoen, A. and Kamatou, G.P.P. (2015). The potential for Eucalyptus radiata leaf essential oil use as a commercial antimicrobial. S Afr J. Bot. 98: 186-187. doi: 10.1016/j.sajb.2015.03.072
  • Zhang, J., An, M., WU, H., Stanton, R. and Lemerle D. (2010). Chemistry and bioactivity of Eucalyptus essential oils. Allelopathy J. 25: 313-330.
  • Barbosa, L.C.A., Filomeno, C.A. and Teixeira, R.R. (2016). Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules. 21: 1671-1704. doi: 10.3390/molecules21121671
  • Piccolo, A. (2002). The Supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 75: 57-134. doi: 10.1016/S0065-2113(02)75003-7
  • Canellas, L.P., Piccolo, A., Dobbss, L.B., Spaccini, R., Olivares, F.L., Zandonadi, D.B., Façanha, A.R. (2010). Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere. 78: 457-466. doi: 10.1016/j.chemosphere.2009.10.018
  • Tan, K.H. and Tantiwiramanond, D. (1983). Effect of humic acids on nodulation and dry matter production of soybean, peanut, and clover. Soil Sci. Soc. Am. J. 47: 1121-1124. doi: 10.2136/sssaj1983.03615995004700060012x
  • Meganid, A.S., Al-Zahrani, H.S. and Selim, E.M.M. (2015). Effect of Humic Acid application on growth and chlorophyll contents of common bean plants (Phaseolus vulgaris L.) under salinity stress conditions. Int. J. Innov. Research Sci, Eng. Tech. 4: 2651-2660.
  • Swift, R.S. (1996). Organic matter characterization. 35: 1018-1020. In: D.L. Sparks et al. (eds) Methods of soil analysis. Part 3. Chemical methods. Soil Sci. Soc. Am. Book Series: 5. Soil Sci. Soc. Am. Madison, WI© Soil Science Society of America.
  • Serafini, L.A. and Cassel, E. (2001). Produção de óleos essenciais: uma alternativa para a agroindústria nacional (Essential oils production: an alternative for the national agri-food industry) Em: Serafini LA, Barros NM, Azevedo JL. Biotecnologia na agricultura e na agroindústria (Biotechnology in agriculture and agri-food industry). Guaíba: Agroindústria. 333-377.
  • Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological effects of essential oils-a review. Food Chem Toxicol. 46: 446-475. doi: 10.1016/j.fct.2007.09.106
  • Dobbss, L.B., Canellas, L.P., Olivares, F.L., Aguiar, N.O., Peres, L.E.P., Azevedo, M., Spaccini, R., Piccolo, A. and Façanha, A.R. (2010). Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J. Agr. Food Chem. 58: 3681-3688. doi: 10.1021/jf904385c
  • Ramos, A.C., Dobbss, L.B., Santos, L.A., Fernandes, M.F., Olivares, F.L., Aguiar, N.O. and Canellas, L.P. (2015). Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+-dependent protein kinase (CDPK) at early stages of lateral plant root development. Chem. Biol. Tech. Agric. 2: 1-12. doi: 10.1186/s40538-014-0030-0
  • Hoagland, D.R. and Arnon, D.I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station, Berkeley, CA, USA 347.
  • Bolhàr-Nordenkampf, H.R., Long, S.P. and Baker, N.R. (1989). Chlorophyll fluorescence as probe of the photosynthetic competence of leaves in the field: a review of current instrument. Funct. Ecol. 3: 497-514. doi: 10.2307/2389624
  • Vokou, D., Douvli, P., Blionis, G.J. and Halley, J.M. (2003). Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J. Chem. Ecol. 29: 2281-2301. doi: 10.1023/A:1026274430898
  • Verdeguer, M., Blazquez, M.A. and Boira, H. (2009). Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochem. Syst. Ecol. 37: 362-369. doi: 10.1016/j.bse.2009.06.003
  • Bellamy, L. (1975). The infra-red spectral of complex molecules. London: Chapman and Hall; New York: Wiley. 433 p.
  • Baes, A.U. and Bloom, P.R. (1989). Diffuse reflectance and transmission fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Sci. Soc. Am. J. 53: 695-700. doi: 10.2136/sssaj1989.03615995005300030008x
  • Shen, J., Gagliardi, S., Mc Coustra, M.R.S. and Arrighi, V. (2016). Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode. Chemosphere 159: 66-71. doi: 10.1016/j.chemosphere.2016.05.069
  • García, A.C., Santos, L.A., Izquierdo, F.G., Rumjanek, V.M., Castro, R.N., dos Santos, F.S., de Souza, L.G.A. and Berbara, R.L.L. (2014). Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.). J. Geochem. Explor. 136: 48-54. doi: 10.1016/j.gexplo.2013.10.005
  • Zandonadi, D.B., Canellas, L.P. and Façanha, A.R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta. 225: 1583-1595. doi: 10.1007/s00425-006-0454-2
  • Silva, M.A.C., Santos, W.C., Simoura, N.T., Tesch, J.A., Ruas, K.F., Colodete, C.M., Tannure, F.P., Barbirato, J.O., Ramos, A.C., Dobbss, L.B. (2015). Vermicompost humic acid stimulates in vitro growth of Cattleya warneri (Orchidaceae) seedlings. Rodriguésia. 66: 759-768. doi: 10.1590/2175-7860201566307
  • Nardi, S., Carletti, P., Pizzeghello, D. and Muscolo, A. (2009). Biological Activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical process involving natural nonliving organic matter in environmental systems. Wiley, New Jersey. 305-340.
  • Ibrahim, M., Oksanen, E. and Holopainen, J. (2004). Effects of limonene on the growth and physiology of cabbage (Brassica oleracea L) and carrot (Daucus carota L) plants. J. Sci. Food Agr. 84: 1319-1326. doi: 10.1002/jsfa.1819

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.