95
Views
4
CrossRef citations to date
0
Altmetric
Articles

The Effect of Zinc and Salicylic Acid Application on Grain Yield, Essential Oil and Phytochemical Properties of Fennel Plants Under Drought Stress

ORCID Icon, &
Pages 1371-1385 | Received 29 Apr 2020, Accepted 02 Dec 2020, Published online: 12 Jan 2021

References

  • Barros, L., Carvalho, A.M., Ferreira, I.C. (2010). The nutritional composition of fennel (Foeniculum vulgare): Shoots, leaves, stems and inflorescences. LWT-Food Sci. Technol. 43: 814-818. doi: 10.1016/j.lwt.2010.01.010
  • Diao, W.R., Hu, Q.P., Zhang, H., Xu, J.G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control. 35: 109-116. doi: 10.1016/j.foodcont.2013.06.056
  • Moser, B.R., Zheljazkov, V.D., Bakota, E.L., Evangelista, R.L., Gawde, A., Cantrell, C.L., Winkler-Moser, J.K., Hristov, A.N., Astatkie, T., Jeliazkova, E. (2014). Method for obtaining three products with different properties from fennel (Foeniculum vulgare) seed. Ind. Crop. Prod. 60: 335-342. doi: 10.1016/j.indcrop.2014.06.017
  • Rather, M.A., Dar, B.A., Sofi, S.N., Bhat, B.A., Qurishi, M.A. (2016). (Foeniculum vulgare): A comprehensive review of its traditional use, phytochemistry, pharmacology and safety. Arab. J. Chem. 9: 1574-1583. doi: 10.1016/j.arabjc.2012.04.011
  • Nguyen, T., Aparicio, M., Saleh, M. (2015). Accurate mass GC/LC-quadrupole time of flight mass spectrometry analysis of fatty acids and triacylglycerols of spicy fruits from the Apiaceae family. Molecules. 20: 21421-21432. doi: 10.3390/molecules201219779
  • Gross, M., Lewinsohn, E., Tadmor, Y., Bar, E., Dudai, N., Cohen, Y., Friedman, J. (2009). The inheritance of volatile phenylpropenes in bitter fennel (Foeniculum vulgare) Mill. var. vulgare, Apiaceae) chemotypes and their distribution within the plant. Biochem. Syst. Ecol. 37: 308-316. doi: 10.1016/j.bse.2009.05.007
  • Pirbalouti, A.G., Samani, M.R., Hashemi, M., Zeinali, H. (2014). Salicylic acid affects growth, essential oil and chemical compositions of thyme (Thymus daenensis Celak.) under reduced irrigation. Plant Growth Regul. 72: 289-301. doi: 10.1007/s10725-013-9860-1
  • Laribi, B., Bettaieb, I., Kouki, K., Sahli, A., Mougou, A., Marzouk, B. (2009). Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Ind. Crop. Prod. 30: 372-379. doi: 10.1016/j.indcrop.2009.07.005
  • Rebey, I.B., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., Marzouk, B. (2012). Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind. Crop. Prod. 36: 238-245. doi: 10.1016/j.indcrop.2011.09.013
  • Amiri, R., Nikbakht, A., Etemadi, N., Sabzalian, M.R. (2017). Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis. 73: 15-25. doi: 10.1007/s13199-016-0466-z
  • Bahreininejad, B., Razmjoo, J., Mirza, M. (2014). Effect of water stress on productivity and essential oil content and composition of (Thymus carmanicus). J. Essent. Oil Bear. Plant. 17: 717-725. doi: 10.1080/0972060X.2014.901605
  • Pirzad, A., Alyari, H., Shakiba, M.R., Zehtab-Salmasi, S., Mohammadi, A. (2006). Essential oil content and composition of German chamomile (Matricaria chamomilla L.) at different irrigation regimes. J. Agron. 5: 451-455. doi: 10.3923/ja.2006.451.455
  • Bettaieb, I., Zakhama, N., Wannes, W.A., Kchouk, M.E., Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 120: 271-275. doi: 10.1016/j.scienta.2008.10.016
  • Askari, E., Ehsanzadeh, P. (2015). Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta. Physiol. Plant. 37: 4. doi: 10.1007/s11738-014-1762-y
  • Meharg, A. (2012). Marschner’s Mineral Nutrition of Higher Plants. Edited by P. Marschner. Amsterdam, Netherlands: Elsevier/Academic Press, Exp. Agric. 48: 305-305.
  • Ojeda-Barrios, D.L., Perea-Portillo, E., Hernández-Rodríguez, O.A., Ávila-Quezada, G., Abadía, J., Lombardini, L. (2014). Foliar fertilization with zinc in pecan trees. HortScience. 49: 562-566. doi: 10.21273/HORTSCI.49.5.562
  • Hassegawa, R.H., Fonseca, H., Fancelli, A.L., da Silva, V.N., Schemas, E.A., Reis, T.A., Corrêa, B. (2008). Influence of macro-and micronutrient fertilization on fungal contamination and fumonisin production in corn grains, Food Control. 19: 36-43. doi: 10.1016/j.foodcont.2007.01.006
  • Sadeghzadeh, B. (2013). A review of zinc nutrition and plant breeding. J. Soil Sci. Plant Nutr. 13: 905-927.
  • Cakmak, I. (2010). Biofortification of cereals with zinc and iron through fertilization strategy. In 19th World Congress of Soil Science, Brisbane.
  • Zou, C.Q., Zhang, Y.Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R.Z., Ortiz-Monasterio, I., Simunji, S., Wang, Z.H., Sohu, V., Hassan, M. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil. 361: 119-130. doi: 10.1007/s11104-012-1369-2
  • Daghan, H., Arslan, M., Uygur, V., Koleli, N. (2013). Transformation of tobacco with ScMTII gene enhanced Cadmium and Zinc accumulation. CLEAN Soil, Air, Water. 41: 503-509. doi: 10.1002/clen.201200298
  • Khot, L.R., Sankaran, S., Maja, J.M., Ehsani, R., Schuster, E.W. (2012). Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 35: 64-70. doi: 10.1016/j.cropro.2012.01.007
  • Miura, K., Tada, Y. (2014). Regulation of water, salinity and cold stress responses by salicylic acid. Front. Plant Sci. 5: 4. doi: 10.3389/fpls.2014.00004
  • Amin, A.A., El-Kader, A.A., Shalaby, M.A., Gharib, F.A., Rashad, E.S.M., Teixeira da Silva, J.A., (2013). Physiological effects of salicylic acid and thiourea on growth and productivity of maize plants in sandy soil. Commun. Soil Sci. Plant Anal. 44: 1141-1155. doi: 10.1080/00103624.2012.756006
  • Khan, W., Prithiviraj, B., Smith, D.L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160: 485-492. doi: 10.1078/0176-1617-00865
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environ. Exp. Bot. 68: 14-25. doi: 10.1016/j.envexpbot.2009.08.005
  • Khan, M.I.R., Fatma, M., Per, T.S., Anjum, N.A., Khan, N.A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6: 462.
  • Yavas, I., Unay, A. (2016). Effects of zinc and salicylic acid on wheat under drought stress. J. Anim. Plant Sci. 26: 1012-1018.
  • Stamatopoulos, N., Gatos, B., Louloudis, G., Pal, U., Alaei, A. (2013). ICDAR 2013 handwriting segmentation contest. In 2013 12th International Conference on Document Analysis and Recognition, IEEE. 1402-1406.
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry, Carol Stream, IL: Allured Publishing Corporation. 456.
  • Bijanzadeh, E., Naderi, R., Egan, T.P. (2019). Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L.) hybrids. J. Plant Nutr. 1-13.
  • Razmi, N., Ebadi, A., Daneshian, J., Jahanbakhsh, S. (2017). Salicylic acid-induced changes on antioxidant capacity, pigments and grain yield of soybean genotypes in water deficit condition. J. Plant Interact. 12: 457-464. doi: 10.1080/17429145.2017.1392623
  • Kolupaev, Y., Yastreb, T.O., Karpets, Y.V., Miroshnichenko, N.N. (2011). Influence of salicylic and succinic acids on antioxidant enzyme activity, heat resistance and productivity of (Panicum miliaceum L.). J. Stress Physiol. Biochem. 7: 154-163.
  • Hussain, M., Malik, M.A., Farooq, M., Khan, M.B., Akram, M., Saleem, M.F. (2009). Exogenous glycinebetaine and salicylic acid application improve water relations, allometry and quality of hybrid sunflower under water deficit conditions. J. Agron. Crop Sci. 195: 98-109. doi: 10.1111/j.1439-037X.2008.00354.x
  • Derakhshani, Z., Hassani, A., Sefidkon, F. (2014). Growth characters, essential oil content and terpene composition of costmary (Chrysanthemum balsamita L.) as influenced by Zinc nutrition and different moisture regimes. J. Essent. Oil Bear. Plant. 17: 1046-1056. doi: 10.1080/0972060X.2014.901614
  • Mahdieh, M., Sangi, M.R., Bamdad, F., Ghanem, A. (2018). Effect of seed and foliar application of nano-zinc oxide, zinc chelate and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. J. Plant Nutr. 41: 2401-2412. doi: 10.1080/01904167.2018.1510517
  • Kheirizadeh Arough, Y., Seyed Sharifi, R., Seyed Sharifi, R. (2016). Biofertilizers and zinc effects on some physiological parameters of triticale under water-limitation conditions. J. Plant Interact. 11: 167-177. doi: 10.1080/17429145.2016.1262914
  • Pandey, N., Pathak, G.C., Sharma, C.P. (2006). Zinc is critically required for pollen function and fertilization in lentils. J. Trace Elem. Med. Biol. 20: 89-96. doi: 10.1016/j.jtemb.2005.09.006
  • Pandey, A.C., Sanjay, S., Yadav, R. (2010). Application of ZnO nanoparticles in influencing the growth rate of (Cicer arietinum). J. Exp. Nanosci. 5: 488-497. doi: 10.1080/17458081003649648
  • Zou, C.Q., Zhang, Y.Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R.Z., Ortiz-Monasterio, I., Simunji, S., Wang, Z.H., Sohu, V., Hassan, M. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil. 361: 119-130. doi: 10.1007/s11104-012-1369-2
  • Daghan, H., Arslan, M., Uygur, V., Koleli, N. (2013). Transformation of tobacco with ScMTII gene enhanced Cadmium and Zinc accumulation. CLEAN Soil, Air, Water. 41: 503-509. doi: 10.1002/clen.201200298
  • Zhao, L., Sun, Y., Hernandez-Viezcas, J.A., Servin, A.D., Hong, J., Niu, G., Peralta-Videa, J.R., Duarte-Gardea, M., Gardea-Torresdey, J.L. (2013). Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J. Agric. Food Chem. 61: 11945-11951. doi: 10.1021/jf404328e
  • Said-Al Ahl H.A.H., Mahmoud, A.A. (2010). Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean J. Appl. Sci. 3: 97-111.
  • Fageria, N.K., Baligar, V.C., Jones, C.A. (2010). Growth and mineral nutrition of field crops. CRC Press.
  • Singh, N.B., Amist, N., Yadav, K., Singh, D., Pandey, J.K., Singh, S.C. (2013). Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J. Nanoeng. Nanomanufact. 3: 353-364. doi: 10.1166/jnan.2013.1156
  • Roach, T., Krieger-Liszkay, A. (2014). Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 15: 351-362. doi: 10.2174/1389203715666140327105143
  • Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Kumar, D.S. (2010). Nano particulate material delivery to plants. Plant Sci. 179: 154-163. doi: 10.1016/j.plantsci.2010.04.012
  • Kapoor, R., Giri, B., Mukerji, K.G. (2004). Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour. Technol. 93: 307-311. doi: 10.1016/j.biortech.2003.10.028
  • Idrees, M., Khan, M.M.A., Aftab, T., Naeem, M., Hashmi, N. (2010). Salicylic acid induced physiological and biochemical changes in lemongrass varieties under water stress. J. Plant Interact. 5: 293-303. doi: 10.1080/17429145.2010.508566
  • Meher, H.C., Gajbhiye, V.T., Singh, G. (2011). Salicylic acid-induced glutathione status in tomato crop and resistance to root-knot nematode, (Meloidogyne incognita) (Kofoid & White) Chitwood. J. Xenobiotic. 1: 15-25. doi: 10.4081/xeno.2011.e5
  • Nazar, R., Iqbal, N., Syeed, S., Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol. 168: 807-815. doi: 10.1016/j.jplph.2010.11.001
  • Pérez, M.G.F., Rocha-Guzmán, N.E., Mercado-Silva, E., Loarca-Piña, G., Reynoso-Camacho, R. (2014). Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. Food Chem. 156: 273-278. doi: 10.1016/j.foodchem.2014.01.101
  • Valladares, F., Niinemets, U. (2007). The architecture of plant crowns: from design rules to light capture and performance. Funct. Plant Ecol. 101-149. doi: 10.1201/9781420007626-4
  • Gharib, F.A.E. (2006). Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. Int. J. Agr. Biol. (4): 485-492.
  • Yadegari, M. (2018). Foliar application effects of salicylic acid and jasmonic acid on the essential oil composition of Salvia officinalis. Turkish. J. Biochem. 43: 417-424.
  • Bayat, H., Alirezaie, M., Neamati, H. (2012). Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L.) under salinity stress. J. Stress Physiol. Biochem. 8.
  • Shabani, L., Ehsanpour, A.A., Asghari, G., Emami, J. (2009). Glycyrrhizin production by in vitro cultured (Glycyrrhiza glabra) elicited by methyl jasmonate and salicylic acid, Russ. J. Plant Physiol. 56: 621-626.
  • Galal, A. (2012). Improving the effect of salicylic acid on the multipurpose tree (Ziziphus spinachristi L.) wild tissue culture. Am. J. Plant Sci. 3: 947. doi: 10.4236/ajps.2012.37112
  • Zare, S., Tavili, A., Shahbazi, A., Riahi, A. (2010). The effect of different salicylic acid concentrations on improved germination characteristics of (Sanguisorba minor L.) under salt and drought stress.
  • Meher, H.C., Gajbhiye, V.T., Singh, G. (2011). Salicylic acid-induced glutathione status in tomato crop and resistance to root-knot nematode, (Meloidogyne incognita) (Kofoid & White) Chitwood. J. Xenobiotic. 1: 15-25. doi: 10.4081/xeno.2011.e5
  • Khan, N., Syeed, S., Masood, A., Nazar, R., Iqbal, N. (2010). The application of salicylic acid increases the contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int. J. Plant Biol. 1: 11-21. doi: 10.4081/pb.2010.e1
  • Soliman, A.S., El-feky, S.A., Darwish, E. (2015). Alleviation of salt stress on (Moringa peregrine) using the foliar application of Nano fertilizers. J. Hortic. For. 7: 36-47. doi: 10.5897/JHF2014.0379
  • Carrubba, A., la Torre, R., Di Prima, A., Saiano, F., Alonzo, G. (2005). Variations in the volatile compounds of a Fennel (Foeniculum vulgare Mill.) variety grown in a semi-arid Mediterranean environment. J. Essent. Oil Bear. Plant. 8: 275-288. doi: 10.1080/0972060X.2005.10662139
  • Yaldiz, G., Camlica, M. (2019). Variation in the fruit phytochemical and mineral composition and phenolic content and antioxidant activity of the fruit extracts of different fennel (Foeniculum vulgare L.) genotypes. Ind. Crop. Prod. 142: 111-121. doi: 10.1016/j.indcrop.2019.111852
  • Zali, A.G., Ehsanzadeh, P., Szumny, A., Matkowski, A. (2018). The genotype-specific response of (Foeniculum vulgare) grain yield and essential oil composition to proline treatment under different irrigation conditions. Ind. Crop. Prod. 124: 177-185. doi: 10.1016/j.indcrop.2018.07.067
  • Coban, F., Ozer, H., Ors, S., Sahin, U., Yildiz, G., Cakmakci, T. (2018). Effects of deficit irrigation on essential oil composition and yield of fennel (Foeniculum vulgare Mill) in a high-altitude environment. J. Essent. Oil Res. 30: 457-463. doi: 10.1080/10412905.2018.1496156
  • Gross, M., Friedman, J., Dudai, N., Larkov, O., Cohen, Y., Bar, E., Ravid, U., Putievsky, E., Lewinsohn, E. (2002). Biosynthesis of estrogel and t-anethole in bitter fennel (Foeniculum vulgare Mill. var. vulgare) chemotypes. Changes in SAM: phenylpropene O-methyltransferase activities during development. Plant Sci. 163: 1047-1053. doi: 10.1016/S0168-9452(02)00279-0
  • Saadati, S., Moallemi, N., Mortazavi, S.M.H., Seyyednejad, S.M. (2013). Effects of zinc and boron foliar application on soluble carbohydrate and oil contents of three olive cultivars during fruit ripening. Sci. Hortic. 164: 30-34. doi: 10.1016/j.scienta.2013.08.033
  • Hanif, M.A., Nawaz, H., Ayub, M.A., Tabassum, N., Kanwal, N., Rashid, N., Saleem, M., Ahmad, M. (2017). Evaluation of the effects of zinc on the chemical composition and biological activity of basil essential oil by using Raman spectroscopy. Ind. Crop. Prod. (96): 91-101. doi: 10.1016/j.indcrop.2016.10.058
  • Manas, D., Bandopadhyay, P.K., Chakravarty, A., Pal, S., Bhattacharya, A. (2014). Effect of foliar application of humic acid, zinc and bo-ron on biochemical changes related to the productivity of pungent pepper (Capsicum annuum L.). Afr. J. Plant Sci. 8: 320-335. doi: 10.5897/AJPS2014.1155
  • Miller, G.W., Huang, I.J., Welkie, G.W., Pushnik, J.C. (1995). The function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In Iron nutrition in soils and plants, Springer, Dordrecht. 19-28.
  • Sangwan, N.S., Farooqi, A.H.A., Shabih, F., Sangwan, R.S. (2001). Regulation of essential oil production in plants. Plant Growth Regul. 34: 3-21. doi: 10.1023/A:1013386921596
  • Misra, A., Dwivedi, S., Srivastava, A.K., Tewari, D.K., Khan, A., Kumar, R. (2006). Low iron stress nutrition for evaluation of Fe-efficient genotype physiology, photosynthesis and essential monoterpene oil (s) yield of (Ocimum sanctum). Photosynthetica. 44: 474-477. doi: 10.1007/s11099-006-0054-1
  • Coolong, T.W., Randle, W.M., Toler, H.D., Sams, C.E. (2004). Zinc availability in hydroponic culture influences glucosinolate concentrations in Brassica rapa. Hortscience. 39: 84-86. doi: 10.21273/HORTSCI.39.1.84
  • Kunwar, G., Pande, C., Tewari, G., Singh, C., Kharkwal, G.C. (2015). Effect of heavy metals on terpenoid composition of (Ocimum basilicum L.) and (Mentha spicata L.). J. Essent. Oil Bear. Plant. 18: 818-825. doi: 10.1080/0972060X.2014.935091
  • Bisht, M., Pande, C., Tewari, G., Bhatt, S., Triphati, S. (2019). Effect of Zinc on the growth and essential oil composition of (Ocimum gratissimum L.). J. Essent. Oil Bear. Plant. 1-14.
  • Misra, A., Sharma, S. (1991). Critical Zn concentration for essential oil yield and menthol concentration of Japanese mint. Fertilizer Res. 29: 261-265. doi: 10.1007/BF01052394
  • Seo, S., Ishizuka, K., Ohashi, Y. (1995). Induction of salicylic acid β-glucosidase in tobacco leaves by exogenous salicylic acid. Plant Cell Physiol. 36: 447-453. doi: 10.1093/oxfordjournals.pcp.a078779
  • Ding, C.K., Wang, C.Y. (2003). The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Plant Sci. 164: 589-596. doi: 10.1016/S0168-9452(03)00010-4
  • Pastiìrová, A., Repcák, M., Eliašová, A. (2004). Salicylic acid induces changes of coumarin metabolites in (Matricaria chamomilla L.). Plant Sci. 167: 819-824. doi: 10.1016/j.plantsci.2004.05.027
  • Jaisi, A., Panichayupakaranant, P. (2016). Increased production of plumbagin in (Plumbago indica) root cultures by biotic and abiotic elicitors. Biotechnol. Lett. 38: 351-355. doi: 10.1007/s10529-015-1969-z
  • Namdeo, A.G. (2007). Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn. Rev. 1: 69-79.
  • Kovácik, J., Grúz, J., Backor, M., Strnad, M., Repcák, M. (2009). Salicylic acid-induced changes to growth and phenolic metabolism in (Matricaria chamomilla) plants. Plant Cell Rep. 28: 135. doi: 10.1007/s00299-008-0627-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.