105
Views
3
CrossRef citations to date
0
Altmetric
Brief Report

In vitro Antibacterial Activity of Essential Oils of Croton tetradenius Baill. From the Brazilian Caatinga Biome and Its Synergistic Effect With Ciprofloxacin and Meropenem

, , , , , , , ORCID Icon, , ORCID Icon & show all
Pages 12-21 | Received 19 Jul 2020, Accepted 30 Dec 2020, Published online: 04 Mar 2021

References

  • Xu, W.H., Liu, W.Y. and Liang, Q. (2018). Chemical constituents from Croton species and their biological activities. Molecules. 23(9): 1-38.
  • Fernandes, H.M.B., Oliveira-Filho, A.A., Sousa, J.P., Oliveira, T.L., Lima, E.O., Meireles, D.R., Brito, M.T., Zelioli, I.A.M., Queiroz, N.C.A., Foglio, M.A., Ruiz, A.L.T.G., Carvalho, J.E., Silva, M.S., Castello-Branco, M.V.S. and Tavares., J.F. (2012). Antitumor, antimicrobial effect and chemical composition of the essential oil of Croton polyandrus Spreng. Lat. Am. J. Pharm. 31(10): 1430-1434.
  • Fernandes, H.M.B., Leão, A.D., Oliveira-Filho, A.A., Sousa, J.P., Oliveira, T.L., Lima, E.O., Silva, M.S. and Tavares, J.F. (2013). Antimicrobial activity and phytochemical screening of extracts from leaves of Croton polyandrus Spreng. Int. J. Pharmacog. Phytochem. Res. 5(3): 223-226.
  • Camurça-Vasconcelos, A.L., Bevilaqua, C.M., Morais, S.M., Maciel, M.V., Costa, C.T., Macedo, I.T., Oliveira, L.M., Braga, R.R., Silva, R.A. and Vieira, L.S. (2007). Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet. Parasitol. 148(3-4): 288-294. doi: 10.1016/j.vetpar.2007.06.012
  • Pereira, C.S.A., Silva, A.V.C., Alves, R.P., Alcantara, R.B.F., Blank, M.F.A., Carvalho, S.V.A., Costa, T.S., White, L.A.S., Pinto, V.S., Sampaio, T.S. and Blank, A.F. (2017). Genetic diversity of native populations of Croton tetradenius Baill. using ISSR markers. Genet. Mol. Res. 16(2): 1-12.
  • Carvalho, K.S., Silva, S.L.E., Souza, I.A., Gualberto, S.A., Cruz, R.C., Santos, F.R. and Carvalho, M.G. (2016). Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus. Parasitol. Res. 115(9): 3441-3448. doi: 10.1007/s00436-016-5106-2
  • Almeida-Pereira, C.S., Nogueira, P.C.L., Barbosa, A.A.T., Nizio, D.A.C., Arrigoni-Blank, M.F., Sampaio, T.S., Alves, R.P., Araujo-Couto, H.G.S., Feitosa-Alcantara, R.B., Melo, J.O. and Blank, A.F. (2019). Chemical composition and antimicrobial activity of essential oils of a Croton tetradenius Baill. germplasm. J. Essent. Oil Res. 31(5): 379-389. doi: 10.1080/10412905.2019.1607785
  • Brito, F.A., Bacci, L., Santana, A.S., Silva, J.E., Nizio, D.A.C., Nogueria, P.C.L., Arrigoni-Blank, M.F., Melo, C.R., Melo, J.O. and Blank, A.F (2020). Toxicity and behavioral alterations caused by essential oils of Croton tetradenius and their major compounds on Acromyrmex balzani. Crop. Prot. 137(2020): 1-7.
  • Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U., Salamat, M.K.F. and Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11: 1645-1658. doi: 10.2147/IDR.S173867
  • Sacramento, A.G., Fernandes, M.R., Sellera, F.P., Dolabella, S.S., Zanella, R.C., Cerdeira, L. and Lincopan, N. (2019). VanA-type vancomycin-resistant Enterococcus faecium ST1336 isolated from mussels in an anthropogenically impacted ecosystem. Mar. Pollut. Bull. 142: 533-536. doi: 10.1016/j.marpolbul.2019.04.014
  • Rousham, E.K., Unicomb, L. and Islam, M.A. (2018). Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioral, epidemiological and One Health approaches. Proc. Biol. Sci. 285(1876): 20180332.
  • Ríos, J.L. and Recio, M.C. (2005). Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 100(1-2): 80-84. doi: 10.1016/j.jep.2005.04.025
  • Guerra, F.Q., Mendes, J.M., Sousa, J.P., Morais-Braga, M.F., Santos, B.H., Coutinho, H.D.M. and Lima, E.O. (2012). Increasing antibiotic activity against a multidrug-resistant Acinetobacter spp. by essential oils of Citrus limon and Cinnamomum zeylanicum. Nat. Prod. Res. 26(23): 2235-2238. doi: 10.1080/14786419.2011.647019
  • Ehlert, P.A.D., Blank, A.F., Blank, M.F.A., Paula, J.W.A., Campos, D.A. and Alviano, C.S. (2006). Tempo de hidrodestilação na extração de óleo essencial de sete espécies de plantas medicinais. Rev. Bras. Plantas. Med. 8(2): 79-80.
  • Adams, R.B. and Ferreira, D. (2007). A theory of friendly boards. J. Financ. 62(1): 217-250. doi: 10.1111/j.1540-6261.2007.01206.x
  • Vandendool, H. and Kratz, P.D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatog. 11: 463-471. doi: 10.1016/S0021-9673(01)80947-X
  • Clinical and Laboratory Standards Institute. (2015). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Approved standard, 10th Edition. CLSI document M07-A10. Wayne, Pennsylvania, USA.
  • Humphries, R.M. (2016). Synergism Testing: Broth Microdilution Checkerboard and Broth Macrodilution Methods. In: Leber AL (Ed). Clinical Microbiology Procedures Handbook, 4th Edition. ASM Press, Washington, DC, American Society of Microbiology, p. 5.16.1-5.16.23.
  • Castro, K.N.C., Chagas, A.C.S., Costa-Júnior, L.M., Canuto, K.M., Brito, E.S., Rodrigues, T.H.S. and Andrade, I.M. (2019). Acaricidal potential of volatile oils from Croton species on Rhipicephalus microplus. Rev. Bras. Farmacogn. 29(6): 811-815. doi: 10.1016/j.bjp.2019.09.001
  • Sadgrove, N.J., Madeley, L.G. and Van Wyk, B.E. (2019). Volatiles from African specie of Croton (Euphorbiaceae), including new diterpenes in essential oil from Croton gratissimus. Heliyon. 5(10): e02677. doi: 10.1016/j.heliyon.2019.e02677
  • Medeiros, V.M., Nascimento, Y.M., Souto, A.L., Madeiro, S.A.L., Costa, V.C.O., Silva, S.M.P.M., Silva, V.S.F., Agra, M.F., Siqueira-Júnior, J.P. and Tavares, J.F. (2017). Chemical composition and modulation of bacterial drug resistance of the essential oil from leaves of Croton grewioides. Microb. Pathog. 111: 468-471. doi: 10.1016/j.micpath.2017.09.034
  • Reyes-Jurado, F., Cervantes-Rincón, T., Bach, H., López-Malo, A. and Palou, E. (2019). Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris) and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crop. Prod. 131: 90-95. doi: 10.1016/j.indcrop.2019.01.036
  • Mahboubi, M., Heidarytabar, R., Mahdizadeh, E. and Hosseini, H. (2017). Antimicrobial activity and chemical composition of Thymus species and Zataria multiflora essential oils. Agric. Nat. Resour. 51(5): 395-401.
  • Tomar, O., Akarca, G., Gök, V. and Ramadan, M.F. (2020). Composition and antibacterial effects of Laurel (Laurus nobilis L.) leaves essential oil. J. Essent. Oil Bear. Pl. 23(2): 414-421. doi: 10.1080/0972060X.2020.1768903
  • Santiago, J.A., Cardoso, M.G., Batista, L.R., Castro, E.M., Teixeira, M.L. and Pires, M.F. (2016). The essential oil from Chenopodium ambrosioides L.: secretory structures, antibacterial and antioxidant activities. Acta. Sci. Biol. Sci. 38(2): 139-147. doi: 10.4025/actascibiolsci.v38i2.28303
  • Zadeh-Asl, R.M., Niakousari, M., Gahruie, H.H., Saharkhiz, M.J. and Khaneghah, A.M. (2018). Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Res. Int. 107: 462-469. doi: 10.1016/j.foodres.2018.02.059
  • Palic, R., Stojanovic, G., Naskovic, T. and Ranelovic, N. (2003). Composition and anti-bacterial activity of Achillea crithmifolia and Achillea nobilis. essential oils. J. Essent. Oil Res. 15(6): 434-437. doi: 10.1080/10412905.2003.9698632
  • Adrar, N., Oukil, N. and Bedjou, F. (2015). Antioxidant and antibacterial activities of Thymus numidicus and Salvia officinalis essential oils alone or in combination. Ind. Crop. Prod. 88: 112-119. doi: 10.1016/j.indcrop.2015.12.007
  • Huang, J., Qian, C., Xu, H. and Huang, Y. (2018). Antibacterial activity of Artemisia asiatica essential oil against some common respiratory infection causing bacterial strains and its mechanism of action in Haemophilus influenzae. Microb. Pathog. 114: 470-475. doi: 10.1016/j.micpath.2017.12.032
  • Van Vuuren, S. and Holl, D. (2017). Antimicrobial natural product research: A review from a South African perspective for the years 2009-2016. J. Ethnopharmacol. 208: 236-252. doi: 10.1016/j.jep.2017.07.011
  • Worthington, R.J. and Melander, C. (2013). Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 31(3): 177-184. doi: 10.1016/j.tibtech.2012.12.006
  • Meletiadis, J., Pournaras, S., Roilides, E. and Walsh, T.J. (2010). Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 54(2): 602-609. doi: 10.1128/AAC.00999-09
  • Yang, S.K., Yusoff, K., Mai, C.W., Lim, W.M., Yap, W.S., Lim, S.H.E. and Lai, K.S. (2017). Additivity vs. Synergism: Investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules. 22(11): 1733. doi: 10.3390/molecules22111733
  • Boonyanugomol, W., Kraisriwattana, K., Rukseree, K., Boonsam, K. and Narachai, P. (2016). In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J. Infect. Public Health. 10(5): 586-592. doi: 10.1016/j.jiph.2017.01.008
  • Huang, W., Wang, J.Q., Song, H.Y., Zhang, Q. and Liu, G.F. (2017). Chemical analysis and in vitro antimicrobial effects and mechanism of action of Trachyspermum copticum essential oil against Escherichia coli. Asian Pac. J. Trop. Med. 10(7): 663-669. doi: 10.1016/j.apjtm.2017.07.006
  • Jin, W.B., Xu, C., Cheng, Q., Qi, X.L., Gao, W., Zheng, Z., Chan, E.W.C., Leung, Y.C., Chan, T.H., Wong, K.Y., Chen, S. and Chan, K.F. (2018). Investigation of synergistic antimicrobial effects of the drug combinations of meropenem and 1,2-benzisoselenazol-3(2H)-one derivative on carbapenem-resistant Enterobacteriaceae producing NDM-1. Eur. J. Med. Chem. 155: 285-302. doi: 10.1016/j.ejmech.2018.06.007
  • Osonwa, E.U., Ugochukwu, J.I., Ajaegbu, E.E., Chukwu, K.I., Azevedo, R.B. and Esimone, C.O. (2017). Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate. Bull. Fac. Pharm. Cairo Univ. 55(2): 233-237.
  • Masadeh, M.M., Alzoubi, K.H., Khaour, O.F. and Al-Azzam, S.I. (2015). Ciprofloxacin-induced antibacterial activity is attenuated by phosphodiesterase inhibitors. Curr. Ther. Res. Clin. Exp. 77: 14-17. doi: 10.1016/j.curtheres.2014.11.001
  • Al-Ani, I., Zimmermann, S., Reichling, J. and Wink, M. (2015). Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens. Phytomedicine. 22(2): 245-255. doi: 10.1016/j.phymed.2014.11.019
  • Rai, M., Paralikar, P., Jogee, P, Agarkar, G., Ingle, A.P., Derita, M. and Zacchino, S. (2017). Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. Int. J. Pharm. 519(1-2): 67-78. doi: 10.1016/j.ijpharm.2017.01.013
  • Shahbazi, Y., Shavisi, N. and Mohebi, E. (2016). The potential application of Ziziphora clinopodioides essential oil and nisin as natural preservatives against Bacillus cereus and Escherichia coli O157: H7 in commercial barley soup. J. Food Safety. 36(4): 435-441. doi: 10.1111/jfs.12257
  • Xiao, S., Cui, P., Shi, W. and Zhang, Y. (2019). Identification of essential oils with strong activity against stationary phase uropathogenic Escherichia coli. Discov. Med. 28(154): 179-188.
  • Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J. and Devkota, H.P. (2019). Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 308: 294-303. doi: 10.1016/j.cbi.2019.05.050
  • Araújo, A.C.J., Freitas, P.R., Barbosa, C.R.S., Muniz, D.F., Rocha, J.E., Neto, J.B.A., Silva, M.M.C., Moura, T.F., Pereira, R.L.S., Ribeiro-Filho, J., Silva, L.E.D., Amaral, W.D., Deschamps, C., Tintino, S.R., Iriti, M., Vitalini, S. and Coutinho, H.D.M. (2020). Essential oil of Croton ceanothifolius Baill. potentiates the effect of antibiotics against multi resistant bacteria. Antibiotics (Basel). 9(1): 27. doi: 10.3390/antibiotics9010027
  • Melo, R.S., Azevedo, A.M.A., Pereira, A.M.G., Rocha, R.R., Cavalcante, R.M.B., Matos, M.N.C., Lopes, P.H.R., Gomes, G.A., Rodrigues, T.H.S., Santos, H.S.D., Ponte, I.L., Costa, R.A., Brito, G.S., Catunda-Júnior, F.E.A. and Carneiro, V.A. (2019). Chemical composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules. 24(21): 3864. doi: 10.3390/molecules24213864

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.