69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Strong Larvicidal and Molluscicidal Activities of the (E)-β-caryophyllene-rich Chemotype of Callicarpa macrophylla Vah Leaf Essential Oil Growing Wild in Vietnam

, , , , , , & show all
Pages 666-680 | Received 06 May 2022, Accepted 13 Jul 2022, Published online: 08 Aug 2022

References

  • Soejima, A., Tagane, S., Van, N.N., Duy, C.N., Huong, N.T.T. and Yahara, T. (2016). Callicarpa bachmaensis Soejima & Tagane (Lamiaceae), a new species from Bach Ma National Park in Thua Thien Hue Province, Central Vietnam. PhytoKeys. 62: 33-39.
  • Phuông, V.X. (2007). Flora of Vietnam. Vol. 6-Verbenaceae. Hanoi, Vietnam: Science & Technics Publishing House.
  • Leeratiwond, C., Chantaranothai, P. and Paton, A.J. (2009). A synopsis of the genus Callicarpa L.(Lamiaceae) in Thailand. Thai For. Bull. (Bot.). 37: 36-58.
  • Lam, D.T., Le, V.T.T., Quan, P.M., Minh, P.T.H., Thuy, T.T.T., Anh, N.T.N. and Kiem, P.V. (2021). Two new terpenoids from the leaves of Callicarpa macrophylla. Nat. Prod. Res. 35(7): 1107-1114.
  • Wang, Z.H., Niu, C., Zhou, D.J., Kong, J.C. and Zhang, W.K. (2017). Three new abietane-type diterpenoids from Callicarpa macrophylla Vahl. Molecules 22(5): 842.
  • Verma, V.K., Siddiqui, N.U. and Aslam, M. (2011). Isolation of 3β,16α,17-trihydroxy-phyllocladane from the leaves of Callicarpa macrophylla Vahl. Nat. Proda. Med. Preliminary 1–3.
  • Chatterjee, A., Desmukh, S.K. and Chandrasekharan, S. (1972). Diterpenoid constituents of Callicarpa macrophylla vahl: The sturctures and stereochemistry of calliterpenone and calliterpenone monoacetate. Tetrahedron. 28(16): 4319-4323.
  • Verma, V.K., Siddiqui, N.U. and Aslam, M. (2012). A new kaurane diterpene from the leaves of Callicarpa macrophylla vahl. Biomed. Pharmacol. J. 5(1): 189-191.
  • Chandra, M., Prakash, O., Kumar, R., Bachheti, R.K., Bhushan, B., Kumar, M. and Pant, A.K. (2017). β-Selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities. Medicines. 4(3): 52.
  • Ban, N.T. (2003). Checklist of plant species of Vietnam. Vol III. Agriculture Publishing House.
  • Chi, V.V. (2012). Dictionary of Vietnamese medical plants. Hanoi: Medicine Publishing House. Medicine Publishing House.
  • Yadav, V., Jayalakshmi, S., Singla, R.K. and Patra, A. (2012). Ex vivo screening of stem extracts of Callicarpa macrophylla Vahl. for antifungal activity. Indo-Glob. Res. J. Pharm. Sci. 2(2): 103-107.
  • Soni, R.K., Dixit, V., Irchhaiya, R. and Alok, S. (2014). Callicarpa macrophylla: a review update on its botany, ethnobotany, phytochemistry and pharmacology. Int. J. Pharmacogn. 1(2): 87-94.
  • Yadav, V., Jayalakshmi, S., Singla, R.K., Patra, A. and Khan, S. (2011). Preliminary assessment of anti-inflammatory activity of Callicarpa macrophylla Vahl. leaves extracts. Indo Global J. Pharm. Sci. 1(3): 219-222.
  • Patel, R. and Jawaid, T. (2014). Hepatoprotective activity of aerial parts of plant extract of Callicarpa macrophylla in rats. J. Pharm. Pharmacol. 2(1): 1-8.
  • Barkatullah, M.I., Nafees, M., Rauf, A. and Khan, H. (2015). Cytotoxic, acute toxicity and phytotoxic activity of Callicarpa macrophylla in various models. Am. J. Biomed. Life Sci. 3(2-1): 1-4.
  • World Health Organization, WHO. (2022). Launch of the global arbovirus initiative. https://www.who.int/news-room/events/detail/2022/03/31/default-calendar/ global-arbovirus-initiative.
  • Wilder-Smith, A., Ooi, E.E., Horstick, O. and Wills, B. (2019). Dengue. The Lancet. 393(10169): 350-363.
  • Sivaratnam, L., Wong, C.M., Selimin, D.S., Bakar, S.A., Ghazi, H. and Hassan, M.R. (2022). Impact of climate change on abundance, distribution, and survival of Aedes species: systematic review. Glob. J. Public Heal. Med. 4(1): 579-607.
  • Bharati, M. and Saha, D. (2021). Insecticide resistance status and biochemical mechanisms involved in Aedes mosquitoes: A scoping review. Asian Pac. J. Trop. Med. 14(2): 52-63.
  • Miller, C.L., Kinsella, J.M., Garner, M.M., Evans, S., Gullett, P.A. and Schmidt, R.E. (2006). Endemic infections of Parastrongylus (=Angiostrongylus) costaricensis in two species of nonhuman primates, raccoons, and an opossum from Miami, Florida. J. Parasitol. 92(2): 406-408.
  • Komalamisra, C., Nuamtanong, S. and Dekumyoy, P. (2009). Pila ampullacea and Pomacea canaliculata, as new paratenic hosts of Gnathostoma spinigerum. Southeast Asian J. Trop. Med. Public Health. 40(2): 243-246.
  • Chobchuenchom, W. and Bhumiratana, A. (2003). Isolation and characterization of pathogens attacking Pomacea canaliculata. World J. Microbiol. Biotechnol. 19(9): 903-906.
  • Hortle, K.G. (2008). Liver and intestinal flukes: an underrated health risk in the Mekong Basin. Catch Cult. 14(2): 1-4.
  • Toledo, R. and Esteban, J.G. (2016). An update on human echinostomiasis. Trans. R. Soc. Trop. Med. Hyg. 110(1): 37-45.
  • Yang, S., Zhong, J.R., Zhao, L.L., Wu, H., Du, Z.J., Liu, Q., Zhang, J.E., Yan, T.M. and Huang, X.L. (2018). The salinity tolerance of the invasive golden apple snail (Pomacea canaliculata). Molluscan Res. 38(2): 90-98.
  • Yang, T.B., Wu, Z.D. and Lun, Z.R. (2013). The apple snail Pomacea canaliculata, a novel vector of the rat lungworm, Angiostrongylus cantonensis: its introduction, spread, and control in China. Hawaii J. Med. Public Health. 72(6 Suppl 2): 23-25.
  • Naylor, R. (1996). Invasions in agriculture: assessing the cost of the golden apple snail in Asia. Ambio. 25(7): 443-448.
  • Van Tu, D., Nha, N.P. and Joshi, R.C. (2018). Invasive apple snails (Pomacea spp.) in Vietnam: Short review. Aquaculture. 22(1): 3-8.
  • Halwart, M. (1994). The golden apple snail Pomacea canaliculata in Asian rice farming systems: present impact and future threat. Int. J. Pest Manag. 40(2): 199-206.
  • Carlsson, N.O. and Lacoursiere, J.O. (2005). Herbivory on aquatic vascular plants by the introduced golden apple snail (Pomacea canaliculata) in Lao PDR. Biol. Invasions. 7(2): 233-241.
  • Calumpang, S.M.F., Medina, M.J.B., Tejada, A.W. and Medina, J.R. (1995). Environmental impact of two molluscicides: niclosamide and metaldehyde in a rice paddy ecosystem. Bull. Environ. Contam. Toxicol. 55(4): 494-501.
  • Castle, G.D., Mills, G.A., Gravell, A., Jones, L., Townsend, I., Cameron, D.G. and Fones, G.R. (2017). Review of the molluscicide metaldehyde in the environment. Environ. Sci. Water Res. Technol. 3(3): 415-428.
  • Radwan, M.A. and Gad, A.F. (2021). Essential oils and their components as promising approach for gastropod mollusc control: a review. J. Plant Dis. Prot. 128(4): 923-949.
  • Djeddour, D., Pratt, C., Makale, F., Rwomushana, I. and Day, R. (2021). The apple snail, Pomacea canaliculata: an evidence note on invasiveness and potential economic impacts for East Africa. CABI Working Paper. 21: 77.
  • Joshi, R.C., Desamito, M.S., Martin, A.R., Sebastian, L.S. and Coupland, J.B. (2004). Detrimental effects of niclosamide 250EC at preseeding in direct-seeded rice culture. Int. Rice Res. Notes. 29(2): 36-37.
  • World Health Organization, WHO. (2014). Aglobal brief on vector-borne diseases. http://apps.who.int/iris/bitstream/10665/111008/1/WHO_DCO_WHD_2014.1_eng.pdf.
  • Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind. Crops Prod. 76: 174-187.
  • Begum, T., Gogoi, R., Sarma, N., Pandey, S.K. and Lal, M. (2022). Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parviflora Wall., ex Baker rhizome essential oil: A high industrially important species. Ind. Crops Prod. 180: 114765.
  • Dutta, P., Sarma, N., Saikia, S., Gogoi, R., Begum. T. and Lal, M. (2021). Pharmacological activity of Trachyspermum ammi L. seeds essential oil grown from Northeast India. J. Essent. Oil Bear. Plants. 24(6): 1373-1388.
  • Sarma, N., Begum. T., Pandey, S.K., Gogoi, R., Munda, S., Lal, M. (2020). Chemical Composition of Syzygium cumini (L.) Skeels leaf essential oil with respect to its uses from North East Region of India. J. Essent. Oil Bear. Plants. 23(3): 601-607.
  • Pandey, S.K., Sarma, N., Begum, T. and Lal, M. (2020). Standardization of different drying methods of fresh patchouli (Pogostemon cablin) leaves for high essential oil yield and quality. J. Essent. Oil Bear. Plants. 23(3): 484-492.
  • Hung, N.H., Huong, L.T., Chung, N.T., Thuong, N.T.H., Satyal, P., Dung, N.A., Tai, T.A. and Setzer, W.N. (2020). Callicarpa species from central Vietnam: Essential oil compositions and mosquito larvicidal activities. Plants. 9(1): 113.
  • Huy Hung, N., Ngoc Dai, D., Satyal, P., Thi Huong, L., Thi Chinh, B., Quang Hung, D., Anh Tai, T. and Setzer, W.N. (2021). Lantana camara essential oils from Vietnam: Chemical composition, molluscicidal, and mosquito larvicidal activity. Chem. Biodivers. 18(5): e2100145.
  • Ellman, G.L., Courtney, K.D., Andres Jr, V. and Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7(2): 88-95.
  • Finney, D. (2009). Probit Analysis. Cambridge University Press, Cambridge, UK.
  • Singh, A.K., Chanotiya, C.S., Yadav, A. and Kalra, A. (2010). Volatiles of Callicarpa macrophylla: a rich source of selinene isomers. Nat. Prod. Commun. 5(2): 1934578X1000500.
  • Adams, R.P. (2017). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th Ed. Allured Publ. Co. Carol Stream, Illinois, USA.
  • Mondello, L. (2016). FFNSC 3. Shimadzu Scientific Instruments. Columbia, Maryland, USA.
  • NIST17 (2017). National Institute of Standards and Technology. Gaithersburg, Maryland, USA.
  • Satyal, P. (2015). Development of GC/MS database of essential oil components by the analysis of natural essential oils and synthetic compounds and discovery of biologically active novel chemotypes in essential oils. ProQuest Diss Theses. Published online. http://210,48.222.80/proxy.pac/docview/1837119262?accountid=44024.
  • Pavela, R. (2015). Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res. 114(10): 3835-3853.
  • Sarma, R., Adhikari, K., Mahanta, S. and Khanikor, B. (2019). Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci. Rep. 9(1): 9471.
  • Sobrinho, A.C.N., de Morais, S.M., Marinho, M.M., de Souza, N.V. and Lima, D.M. (2021). Antiviral activity on the Zika virus and larvicidal activity on the Aedes spp. of Lippia alba essential oil and β-caryophyllene. Ind. Crops Prod. 162(July 2020): 113281.
  • Silva, W.J., Dória, G.A.A., Maia, R.T., Nunes, R.S., Carvalho, G.A., Blank, A.F., Alves, P.B., Marçal, R.M. and Cavalcanti, S.C.H. (2008). Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour. Technol. 99(8): 3251-3255.
  • Alı, A., Tabanca, N., Kurkcuoglu, M., Duran, A., Blythe, E.K., Khan, I.A. and Can Baser, K.H. (2014). Chemical composition, larvicidal, and biting deterrent activity of essential oils of two subspecies of Tanacetum argenteum (Asterales: Asteraceae) and individual constituents against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 51(4): 824-830.
  • Cheng, S.S., Chang, H.T., Lin, C.Y., Chen, P.S., Huang, C.G., Chen, W.J. and Chang, S.T. (2009). Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag. Sci. 65(3): 339-343.
  • Hoi, T.M., Huong, L.T., Chinh, H.V., Hau, D.V., Satyal, P., Tai, T.A., Dai, D.N., Hung, N.H., Hien, V.T. and Setzer, W.N. (2020). Essential oil compositions of three invasive Conyza species collected in Vietnam and their larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Molecules. 25(19): 4576.
  • Arriaga, A.M., Rodrigues, F.E., Lemos, T.L., de Oliveira, M.D.C., Lima, J.Q., Santiago, G.M., Braz-Filho, R. and Mafezoli, J. (2007). Composition and larvicidal activity of essential oil from Stemodia maritima L. Nat. Prod. Commun. 2(12): 1934578X0700201.
  • World Health Organization, WHO. UNDP/ World Bank/WHO Special programme for research and training in tropical diseases available online: https://apps.who.int/iris/ handle/10665/60086 (accessed on Mar 12, 2021).
  • Pereira, L.P.L.A., Ribeiro, E.C.G., Brito, M.C.A., Silveira, D.P.B., Araruna, F.O.S., Araruna, F.B., Leite, J.A. C., Dias, A.A.S., Firmo, W.D.C.A., da Rocha Borges, M.O. and Borges, A.C.R. (2020). Essential oils as molluscicidal agents against schistosomiasis transmitting snails-A review. Acta Trop. 209: 105489.
  • Lahlou, M. and Berrada, R. (2001). Potential of essential oils in schistosomiasis control in Morocco. Int. J. Aromather. 11(2): 87-96.
  • Rouquayrol, M.Z. (1984). Atividade moluscicida de plantas do Nordeste Brasileiro. Rev. Bras. Promoç. Saúde. 1(1): 24-26.
  • Salleh, W.M.N.H.W. and Khamis, S. (2020). Chemical composition and anticholinesterase inhibitory activity of Pavetta graciliflora Wall. ex Ridl. essential oil. Z. Naturforsch., C, J. Biosci. 75(11-12): 467-471.
  • Ali, N.A.A., Crouch, R.A., Al-Fatimi, M.A., Arnold, N., Teichert, A., Setzer, W.N. and Wessjohann, L. (2012). Chemical composition, antimicrobial, antiradical and anticholinesterase activity of the essential oil of Pulicaria stephanocarpa from Soqotra. Nat. Prod. Commun. 7(1): 1934578X1200700.
  • Siebert, D.A., Tenfen, A., Yamanaka, C.N., de Cordova, C.M.M., Scharf, D.R., Simionatto, E.L. and Alberton, M.D. (2015). Evaluation of seasonal chemical composition, antibacterial, antioxidant and anticholinesterase activity of essential oil from Eugenia brasiliensis Lam. Nat. Prod. Res. 29(3): 289-292.
  • Karakaya, S., Yilmaz, S.V., Özdemir, Ö., Koca, M., Pınar, N.M., Demirci, B., Yıldırım, K., Sytar, O., Turkez, H. and Baser, K.H.C. (2020). A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). J. Essent. Oil Res. 32(6): 512–525.
  • Kaufmann, D., Dogra, A.K. and Wink, M. (2011). Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. J. Pharm. Pharmacol. 63(10): 1368-1371.
  • Bonesi, M., Menichini, F., Tundis, R., Loizzo, M.R., Conforti, F., Passalacqua, N.G., Statti, G.A. and Menichini, F. (2010). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzyme Inhib. Med. Chem. 25(5): 622-628.
  • Savelev, S.U., Okello, E.J. and Perry, E.K. (2004). Butyryl- and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phyther. Res. 18(4): 315-324.
  • Savelev, S., Okello, E., Perry, N.S.L., Wilkins, R.M. and Perry, E.K. (2003). Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 75(3): 661-668.
  • Miyazawa, M. and Yamafuji, C. (2005). Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem. 53(5): 1765-1768.
  • Wright, B.S., Bansal, A., Moriarity, D.M., Takaku, S. and Setzer, W.N. (2007). Cytotoxic leaf essential oils from Neotropical Lauraceae: Synergistic effects of essential oil components. Nat. Prod. Commun. 2(12): 1934578X0700201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.