89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization, Yield and Chemical Composition of Essential Oil from Kaempferia galanga L. Rhizome: Comparative Study with Microwave Assisted Extraction and Hydrodistillation

&
Pages 444-455 | Received 14 Dec 2021, Accepted 19 Jul 2022, Published online: 08 Aug 2022

References

  • Mohammadhosseini, M., Akbarzadeh, A., Shafaghat, A., Hashemi-Moghaddam, H., Mohammadi, N.A. and Ashouri, H. (2016). Chemical composition of the essential oils from flowers and leaves of Marsdenia erecta using microwave assisted hydrodistillation technique. J. Essent. Oil-Bear. Plants. 19(4): 863-874. doi: 10.1080/0972060X.2016.1202780
  • Chang, S., Abbaspour, H., Nafchi, A.M., Heydari, A. and Mohammadhosseini, M. (2016). Iranian Foeniculum vulgare essential oil and alcoholic extracts: Chemical composition, antimicrobial, antioxidant and application in olive oil preservation. J. Essent. Oil-Bear. Plants. 19(8): 1920-1931. doi: 10.1080/0972060X.2016.1238324
  • Chang, S., Nafchi, A.M. and Karim, A.A. (2016). Chemical composition, antioxidant activity and antimicrobial properties of three selected varieties of Iranian fennel seeds. J. Essent. Oil Res. 28(4): 357-363. doi: 10.1080/10412905.2016.1146169
  • Daneshzadeh, M.S., Abbaspour, H., Amjad, L. and Nafchi, A.M. (2020). An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri F. Delaroche. Journal of Food Measurement and Characterization. 14(2): 708-715. doi: 10.1007/s11694-019-00317-y
  • Ekramian, S., Abbaspour, H., Roudi, B., Amjad, L. and Nafchi, A.M. (2021). An experimental study on characteristics of sago starch film treated with methanol extract from Artemisia sieberi Besser. J. Food Meas. Charact. 15: 3298-3306. doi: 10.1007/s11694-021-00895-w
  • Ekramian, S., Abbaspour, H., Roudi, B., Amjad, L. and Nafchi, A.M. (2021). Influence of Nigella sativa L. Extract on Physico-Mechanical and Antimicrobial Properties of Sago Starch Film. J. Polym. Environ. 29(1): 201-208. doi: 10.1007/s10924-020-01864-y
  • Munda, S., Saikia, P. and Lal, M. (2018). Chemical composition and biological activity of essential oil of Kaempferia galanga: a review. J. Essent. Oil Res. 30(5): 303-308. doi: 10.1080/10412905.2018.1486240
  • Preetha, T.S., Hemanthakumar, A.S. and Krishnan, P.N. (2016). A comprehensive review of Kaempferia galanga L. (Zingiberaceae): A high sought medicinal plant in Tropical Asia. J. Med. Plants Stud. 4: 270-76.
  • Sunita, M., Pompy, S. and Mohan, L. (2018). Chemical composition and biological activity of essential oil of Kaempferia galanga: a review. J. Essent. Oil Res. 30(5): 303-308. doi: 10.1080/10412905.2018.1486240
  • Sunita, M., Sukriti, D., Sudin, K.P., Neelav, S. and Mohan, L. (2019). Antimicrobial Activity of Essential Oils of Medicinal and Aromatic Plants of the North East India: A Biodiversity Hot Spot. J. Essent. Oil-Bear. Plants. 22(1): 105-119. doi: 10.1080/0972060X.2019.1601032
  • Alsalhi, M.S., Elumalai, K., Devanesan, S., Govindarajan, M., Krishnappa, K. and Maggi, F. (2020). The aromatic ginger Kaempferia galanga L. (Zingiberaceae) essential oil and its main compounds are effective larvicidal agents against Aedes vittatus and Anopheles maculatus without toxicity on the non-target aquatic fauna. Ind. Crops Prod. 158: 1-8. doi: 10.1016/j.indcrop.2020.113012
  • Li, Y.C., Ji, H., Li, X.H., Zhang H.X. and Li, H.T. (2017). Isolation of nematicidal constituents from essential oil of Kaempferia galanga L rhizome and their activity against Heterodera avenae Wollenweber. Trop. J. Pharm. Res. 16(1): 59-65. doi: 10.4314/tjpr.v16i1.8
  • Thiengsusuk, A., Chaijaroenkul, W. and Na-Bangchang, K. (2013). Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol. Res. 112(4): 1475-1481. doi: 10.1007/s00436-013-3294-6
  • Bhaskar, P.M., Neelav, S., Phirose, K., Twahira, B., Lakshi, S., Mohan, L. and Saikat, H. (2020). Hydrodistillation based multifaceted value addition to Kaempferia galanga L. leaves, an agricultural residue. Ind. Crops Prod. 154: 112642. doi: 10.1016/j.indcrop.2020.112642
  • Twahira, B., Roktim, G., Neelav, S., Sudin, K.P. and Mohan, L. (2022). Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parviflora Wall., ex Baker rhizome essential oil: A high industrially important species. Ind. Crops Prod. 180: 114765. doi: 10.1016/j.indcrop.2022.114765
  • He, Z.H., Yue, G.G.L., Lau, C.B.S., Ge, W. and But, P.P.H. (2012). Antiangiogenic effects and mechanisms of trans-Ethyl p-Methoxycinnamate from Kaempferia galanga L. J. Agric. Food Chem. 60(45): 11309-11317. doi: 10.1021/jf304169j
  • Amuamuta, A., Plengsuriyakarn, T. and Na-Bangchang, K. (2017). Anticholangiocarcinoma activity and toxicity of the Kaempferia galanga Linn. Rhizome ethanolic extract. BMC Complement. Altern. Med. 17(213): 1-11.
  • Lal, M. (2019). Bharamputra-1(IC0610826; INGR17081), an Aromatic ginger (Kaempferia galanga) Germplasm with High rhizome yield (10 tones/ha) and Dry Rhizome Recovery. High Essential Oil. IJPGR. 32(2): 284-285.
  • Mohan, L., Sunita, M., Sukriti, D., Joyashree, B. and Sudin, K.P. (2017). Identification of the New High Oil and Rhizome Yielding Variety of Kaempferia galanga (Jor Lab K-1): A Highly Important Indigenous Medicinal Plants of North East India. J. Essent. Oil-Bear. Plants. 20(5): 1275-1282. doi: 10.1080/0972060X.2017.1400405
  • Panyakaew, J., Sookkhee, S., Rotarayanont, S., Kittiwachana, S., Wangkarn, S. and Mungkornasawakul, P. (2017). Chemical Variation and Potential of Kaempferia Oils as Larvicide Against Aedes aegypti. J. Essent. Oil-Bear. Plants. 20(4): 1044-1056. doi: 10.1080/0972060X.2017.1377114
  • Fan, X.D., Ma, Q., Liu, X.C., Qiu, T.Q. and Jiang, J.G. (2015). Ultrasoundenhanced subcritical water extraction of essential oils from Kaempferia galangal L. and their comparative antioxidant activities. Sep. Purif. Technol. 150: 73-79. doi: 10.1016/j.seppur.2015.06.013
  • Wang, Y., Jiang, Z. T., Li, R. and Guan, W.Q. (2013). Composition Comparison of Essential Oils Extracted by Microwave assisted Hydrodistillation and Hydrodistillation from Kaempferia galanga L. Grown in China. J. Essent. Oil-Bear. Plants. 12(4): 415-421. doi: 10.1080/0972060X.2009.10643739
  • Rahmati, S., Abdullah, A. and Kang, O.L. (2019). Effects of different microwave intensity on the extraction yield and physicochemical properties of pectin from dragon fruit (Hylocereus polyrhizus) peels. Bioact. 18: 1-8.
  • Ren, B., Chen, C., Li, C., Fu, X., You, L. and Liu, R.H. (2017). Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr. Polym. 173: 192-201. doi: 10.1016/j.carbpol.2017.05.094
  • Najmuldeen, G.F., Narayanan, K., Kirubananthan, D.A.P. and Faisal, G.G. (2018). Comparison of Tongkat Ali Root Chemical Composition Extracted by Soxhlet, Conventional Steam and Microwave Assisted Extraction Techniques. J. Pharmacogn. Phytochem. 10(5): 916-920. doi: 10.5530/pj.2018.5.154
  • Zlotek, U., Mikulska, S., Nagajek, M. and Swieca, M. (2016). The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J. Biol. Sci. 23: 628-633. doi: 10.1016/j.sjbs.2015.08.002
  • Pavlic, B., Naffati, A., Hojan, T., Vladic, J., Zekovic, Z. and Vidovic, S. (2016) Microwave-assisted extraction of wild apple fruit dust-production of polyphenol-rich extracts from filter tea factory by-products. J. Food Process Eng. 40(4): 1-11.
  • Maran, J.P. and Prakash, K.A. (2015). Process variables influence on microwave assisted extraction of pectin from waste Carcia papaya L. peel. Int. J. Biol. Macromol. 73: 202-206. doi: 10.1016/j.ijbiomac.2014.11.008
  • Manat, H. and Weerachai, P. (2022). The process optimization of microwave assisted extraction on Cinnamomum Verum J. Presl. extraction yield and comparative of chemical compositions to supercritical fluid extraction and hydrodistillation. Nat. Volatiles Essent. Oils. 9(1): 1343-1358.
  • Elik, A., Yanik, D.K. and Gogus, F. (2020). Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT-Food Science and Technology. 123: 1-7. doi: 10.1016/j.lwt.2020.109100
  • Kumar, A. (2014). Chemical composition of essential oil Isolated from the rhizome of Kaempferia galanga L. Int. J. Pharma. Bio. Sci. 5: 225-231.
  • National Institute of Science and Technology. (2018). NIST Chemistry Webbook. Data from NIST Standard Reference Database 69.
  • Adams, R.P. (2007). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured Publishing Corporation, Carol Stream, Illinois.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.