75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical Composition, Antifungal, Antioxidant and Cytotoxic Potential of Apium graveolens L. (Celery) Leaves Essential Oil Collected from Nainital, Uttarakhand

, , , ORCID Icon &
Pages 844-858 | Received 21 Apr 2022, Accepted 05 Aug 2022, Published online: 06 Sep 2022

References

  • Bais, S., Gill, N.S., Rana, N. and Shandil, S. (2014). A phytopharmacological review on a medicinal plant: Juniperus communis. International Scholarly Research Notices.
  • Maryam, I., Huzaifa, U., Hindatu, H. and Zubaida, S. (2015). Nanoencapsulation of essential oils with enhanced antimicrobial activity: A new way of combating antimicrobial Resistance. Int. J. Pharmacogn. Phytochem. 4: 165-170.
  • Pandey, S.K., Bhandari, S., Sarma, N., Begum, T., Munda, S., Baruah, J., Gogoi, R., Haldar, S. and Lal, M. (2021). Essential oil compositions, pharmacological importance and agro technological practices of Patchouli (Pogostemon cablin Benth.): A review. J. Essent. Oil-Bear. Plants. 24: 1212-1226.
  • Begum, T., Gogoi, R., Sarma, N., Pandey, S.K. and Lal, M. (2022). Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parviflora Wall., ex Baker rhizome essential oil: A high industrially important species. Ind Crops Prod. 180: 114765.
  • Rana, A., Negi, P.B. and Sahoo, N.G. (2022). Phytochemical screening and characterization of bioactive compounds from Juniperus squamata root extract. Mater. Today: Proc. 48: 672-675.
  • Downie, S.R., Katz-Downie, D.S. and Watson, M.F. (2000). A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. Am. J. Bot. 87: 273-92.
  • Asif, H.M., Akram, M., Usmanghani, K., Akhtar, N., Shah, P.A., Uzair, M., Ramzan, M., Shah, S.A. and Rehman, R. (2011). Monograph of Apium graveolens Linn. J. Med. Plants Res. 5: 1494-1496.
  • Njoku, U.U., Elijah, J.P., Offor, L.I. and Okoli, C.O. (2011). Antioxidant Properties of Apium graveolens. Int. J. Pharmacogn. Phytochem. 3: 201-205.
  • Grube, K., Spiegler, V. and Hensel, A. (2019). Antiadhesive phthalides from Apium graveolens fruits against uropathogenic E. coli. J. Ethnopharmacol. 237: 300-306.
  • Kooti, W., Ali-Akbari, S., Asadi-Samani, M., Ghadery, H. and Ashtary-Larky, D. (2015). A review on medicinal plant of Apium graveolens. Nat. Prod. J. 1: 48-59.
  • Fazal, S.S. and Singla, R.K. (2012). Review on the pharmacognostical & pharmacological characterization of Apium graveolens Linn. Indo-Glob. Res. J. Pharm. Sci. 2: 36-42.
  • AL-Jumaily, R.M.K. (2010). Evaluation of anticancer activities of crude extracts of Apium graveolens L. seeds in two cell lines, RD and L20B in vitro. Iraqi J. Cancer Med. Genet. 3: 18-23.
  • Mahran, G.H., Kadry, H.A., Isaac, Z.G., Thabet, C.K., Al-Azizi, M.M. and El-Olemy, M.M. (1991). Investigation of diuretic drug plants. 1. Phytochemical screening and pharmacological evaluation of Anethum graveolens L., Apium graveolens L., Daucus carota L. and Eruca sativa mill. Phytother. Res. 5: 69-172.
  • Singh, A. and Handa, S.S. (1995). Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats. J. Ethnopharmacol. 49: 119-126.
  • Mansi, K., Abushoffa, A.M., Disi, A. and Aburjai, T. (2009). Hypolipidemic effects of seed extract of celery (Apium graveolens) in rats. Pharmacogn. Mag. 5: 301.
  • Jorge, V.G., Angel, J.R.L., Adrian, T.S., Francisco, A.C., Anuar, S.G., Samuel, E.S. and Emmanuel, H.N. (2013). Vasorelaxant activity of extracts obtained from Apium graveolens: Possible source for vasorelaxant molecules isolation with potential antihypertensive effect. Asian Pac. J. Trop. Biomed. 3: 776-779.
  • Popovic, M., Kaurinovic, B., Trivic, S., Mimica-Dukic, N. and Bursac, M. (2006). Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative stress in mice treated with carbon tetrachloride. Phytother. Res. 20: 531-537.
  • Gabal, A.M. (2020). Basil (Ocimum basilicum L.) and/or Celery (Apium graveolens L.) Leaves Aqueous Extracts Role in Opposition to Drinking Contaminated Water Induced Male Rats Urinary Stones and Renal Deteriorations. Annu. Res. Rev. Biol. 52-65.
  • Cocan, I., Alexa, E., Danciu, C., Radulov, I., Galuscan, A., Obistioiu, D., Morvay, A.A., Sumalan, R.M., Poiana, M.A., Pop, G. and Dehelean, C.A. (2018). Phytochemical screening and biological activity of Lamiaceae family plant extracts. Exp. Ther. Med. 15: 1863-1870.
  • Thakuria, P., Nath, R., Sarma, S., Kalita, D., Dutta, D., Borah, P., Sharma, R., Barman, C. and Hussain, J. (2018). Phytochemical screening of medicinal plants occurring in local area of Assam. Int. J. Pharmacogn. Phytochem. 7: 186-188.
  • Nejat, N. and Mantri, N. (2017). Plant immune system: crosstalk between responses to biotic and Abiotic stresses the missing link in understanding plant defence. Curr. Issues Mol. Biol. 23: 1-16.
  • Kamble, V. and Patil, S. (2008). Spice-derived essential oils: Effective antifungal and possible therapeutic agents. J. Herbs, Spices Med. Plants. 14: 3-4.
  • Marongiu, B., Piras, A., Porcedda, S., Falconieri, D., Maxia, A., Frau, M.A. and Salgueiro, L. (2013). Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: chemical composition and antifungal activity. Nat. Prod. Res. 27: 1521-1527.
  • Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M.H. and Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124: 198-202.
  • Taiz, L. and Zeiger, E. (2009). Fisiologia vegetal. In Fisiologia vegetal. 848-848.
  • Mostafa, A.A., Al-Askar, A.A., Almaary, K.S., Dawoud, T.M., Sholkamy, E.N. and Bakri, M.M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food Poisoning diseases. Saudi J. Biol. Sci. 25: 361-366.
  • Tongnuanchan, P. and Benjakul, S. (2014). Essential oils: extraction, bioactivities, and their uses for food preservation. J. Food Sci. 79: 1231-49.
  • Rahman, M., Rahman, A. and Alamgir, A.N. (2017). Phytochemical screening of some anticancer designate medicinal plants of Polypetalae. Int. J. Pharmacogn. Phytochem. 6: 177-180.
  • Dabrowska, J.A., Kunicka-Styczynska, A. and Smigielski, K.B. (2020). Biological, chemical, and aroma profiles of essential oil from waste celery seeds (Apium graveolens L.). J. Essent. Oil Res. 1-8.
  • Ghalem, B.R. and Ali, B. (2017). Preliminary phytochemical screening of five commercial essential oils. World J. App. Chem. 2: 145-151.
  • Sameh, B., Ibtissem, B., Mahmoud, A., Boukef, K. and Boughattas, N.A. (2011). Antioxidant activity of Apium graveolens extracts. J. Biol. Act. Prod. Nat. 1: 340-343.
  • Chonpathompikunlert, P., Boonruamkaew, P., Sukketsiri, W., Hutamekalin, P. and Sroyraya, M. (2018). The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complementary and Altern. Med. 18: 1-12.
  • Yıldız, L., Başkan, K.S., Tutem, E. and Apak, R. (2008). Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta. 77: 304-313.
  • Nickavar, B., Kamalinejad, M. and Izadpanah, H. (2007). In vitro free radical scavenging activity of five Salvia species. Pak. J. Pharm. Sci. 20: 291-294.
  • Zidorn, C., Johrer, K., Ganzera, M., Schubert, B., Sigmund, E.M., Mader, J., Greil, R., Ellmerer, E.P. and Stuppner, H. (2005). Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J. Agric. Food. Chem. 53: 2518-2523.
  • Gogoi, R., Begum, T., Sarma, N., Kumar Pandey, S. and Lal, M. (2021). Chemical composition of Callistemon citrinus (Curtis) Skeels aerial part essential oil and its pharmacological applications, neurodegenerative inhibitory, and genotoxic efficiencies. J. Biochem. 45: 13767.
  • Gogoi, R., Sarma, N., Begum, T., Pandey, S.K. and Lal, M. (2020). North-East Indian Chromolaena odorata (L. King Robinson) aerial part essential oil chemical composition, pharmacological activities-neurodegenerative inhibitory and toxicity study. J. Essent. Oil-Bear. Plants. 23: 1173-1191.
  • 38. Adams, R.P. (2001). Identification of essential oils by gas chromatography quadrupole mass spectrometry. Allured Publishing Corporation, Carol Stream, USA.
  • Javed, S.M., Kumar, P., Kumar, R., Tiwari, A.K. and Bisht, K.S. (2016). In vitro antifungal, antibacterial and antioxidant activity of essential oil from the aerial parts of Agrimonia aitchisonii, Schonbeck temesy from Himalayan region. World J. Pharm. Res. 5: 1747-1763.
  • Feng, W. and Zheng, X. (2007). Essential oils to control Alternaria alternata in vitro and in vivo. Food Control. 18: 1126-1130.
  • Srivastava, S. and Singh, R.P. (2001). Antifungal activity of the essential oil of Murrayakoenigii (L.) Spreng. Indian Perfumer. 45: 49-52.
  • Chandra, D., Prasad, K., Kohli, G., Devrani, M.K., Bisht, G. and Pandey, B. (2017). Antifungal activity of Swertia ciliata (Family-Gentianaceae), Acorus calamus (Family-Araceae) and Viola serpens (Family-Violaceae) from Pithoragarh, Uttarakhand Himalayas, India. J. Med. Plants Stud. 5: 06-10.
  • Brand-Williams, W., Cuvelier, M.E. and Berset, C.L. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30.
  • Kumar, V., Mathela, C.S., Tewari, A.K. and Bisht, K.S. (2014). In vitro inhibition of essential oil from some Lamiaceae species against phytopathogenic fungi. Pesticide Biochemistry Phisiology. 114: 67-71.
  • Faria, A., Oliveira, J., Neves, P., Gameiro, P., Santos-Buelga, C., de Freitas, V. and Mateus, N. (2005). Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts. J. Agri. Food Chem. 53: 6896-6902.
  • Bahukhandi, A., Rawat, S., Bhatt I.D. and Rawal, R.S. (2013). Influence of solvent types and source of collection on total phenolic content and antioxidant activities of Acoruscalamus L. Nat. Acad. Sci. Lett. 36: 93-99.
  • Nao, N., Yamagishi, J., Miyamoto, H., Igarashi, M., Manzoor, R., Ohnuma, A., Tsuda, Y., Furuyama, W., Shigeno, A., Kajihara, M., Kishida, N., Yoshida, R. and Takada, A. (2017). Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin. M. Bio. 8(1).
  • Saikia, M., Hazarika, S., Yunus, M., Pal, M.R., Das, J.C., Borah, C. and Tamuly, C. (2018). Green synthesis of Au-Ag-In-rGO nano composites and its α-glucosidase inhibition and cytotoxicity effects. Mater. Lett. 211: 48-50.
  • Rana, A., Matiyani, M., Tewari, C., Negi, P.B., Arya, M.C., Das, V., Pal, M., and Sahoo, N.G. (2022). Functionalized Graphene Oxide Based Nanocarrier for Enhanced Cytotoxicity of Juniperus squamata Essential Oil against Breast Cancer Cells. J. Drug. Deliv. Sci. Technol. 72: 103370.
  • Vichai, V. and Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1: 1112-1116.
  • Gong, Y., Liu, W., Huang, X., Hao, L., Li, Y. and Sun, S. (2019). Antifungal activity and potential Mechanism of N-butylphthalide alone and in combination with fluconazole against Candida albicans. Front Microbiol. 10: 1-12.
  • Jantan, I.B., Moharam, B.A., Santhanam, J. and Jamal, J.A. (2008). Correlation between chemical composition and antifungal activity of the essential oils of eight cinnamomum. Species. Pharm Biol. 46: 406-412.
  • Rozek, E., Nurzyńska-Wierdak, R. and Dzida, K. (2012). Factors modifying yield quantity and quality, as well as the chemical composition of the leaves of leaf celery Apium graveolens L. var. secalinum Alef. grown from seedlings. Acta Sci. Pol. Hortorum Cultus. 11: 201-210.
  • Grover, R.K. and Moore, J.D. (1962). Toxicometric studies of fungicides against brown rot organisms Sclerotinia fructicolaand S. laxa. Phytopathology. 52: 876-880.
  • Suhr, K.I. and Nielsen, P.V. (2003). Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J. Appl. Microbiol. 94: 665-674
  • Tian, F., Woo, S.Y., Lee, S.Y. and Chun, H.S. (2018). p-Cymene and its derivatives exhibit antiaflatoxigenic activities against Aspergill us flavus through multiple modes of action. Appl. Biol. Chem. 61: 489-497.
  • Marchese, A., Arciola, C.R., Barbieri, R., Silva, A.S., Nabavi, S.F., TseteghoSokeng, A.J., Izadi, M., Jafari, N.J., Suntar, I., Daglia, M., Nabavi, S.M. (2017). Update on monoterpenes as antimicrobial agents: a particular focus on p-cymene. Materials. 10: 1-15.
  • de Oliveira, T.M., de Carvalho, R.B.F., da Costa, I.H.F., de Oliveira, G.A.L., de Souza, A.A., de Lima, S.G. and de Freitas, R.M. (2015). Evaluation of p-cymene, a natural antioxidant. Pharm. Biol. 53: 423-428.
  • Munoz, J.E., Rossi, D.C., Jabes, D.L., Barbosa, D.A., Cunha, F.F., Nunes, L.R., Arruda, D.C. and Pelleschi, T.C. (2020). In Vitro and in Vivo Inhibitory Activity of Limonene against Different Isolates of Candida spp. J. Fungi. 6: 1-12.
  • Ravichandran, C, Badgujar, P.C., Gundev, P. and Upadhyay, A. (2018). Review of toxicological assessment of d-limonene, a food and cosmetics additive. Food Chem Toxicol. 120: 668-680.
  • Yoon, W.J., Lee, N.H. and Hyun, C.G. (2010). Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J. Oleo Sci. 59: 415-421.
  • Leung, A.Y. (1980). Encyclopedia of Common Natural Ingredients Used in Food, Drugs and Cosmetics. New York: John Wiley & Sons.
  • Behr, A. and Johnen, L. (2009). Myrcene as a natural base chemical in sustainable chemistry: a critical review. Chem. Sus. Chem. 2: 1072-1095.
  • Ojeda-Sana, A.M., Van Baren, C.M., Elechosa, M.A., Juarez, M.A. and Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control. 31: 189-195.
  • Inoue, Y., Shiraishi, A., Hada, T., Hamashima, H. and Shimada, J. (2004). The antibacterial effects of myrcene on Staphylococcus aureus and its role in the essential oil of the tea tree (Melaleuca alternifolia). Nat. Med. 58: 10-14.
  • Bai, X. and Tang, J. (2020). Myrcene exhibits antitumor activity against lung cancer cells by inducing oxidative stress and apoptosis mechanisms. Nat. Prod. Commun. 15: 1-7.
  • Rao, V.S., Menezes, A.M. and Viana, G.S. (1990). Effect of myrcene on nociception in mice. J. Pharm. Pharmacol. 42: 877-878.
  • Gurgeldo Vale, T., Couto Furtado, E., Santos, J.G. and Viana, G.S.B. (2002). Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) N.E. Brown Phytomed. 9: 709-714.
  • Al-Omari, S.M. (2007). The Effect of Thujone and Myrcene on Diabetes Mellitus in Albino Rats. Faculty of Graduate Studies University of Jordan.
  • Tashakori-Sabzevar, F., Razavi, B.M., Imenshahidi, M., Daneshmandi, M., Fatehi, H., Sarkarizi, Y.E. and Mohajeri, S.A. (2016). Evaluation of mechanism for antihypertensive and vasorelaxant effects of hexanic and hydroalcoholic extracts of celery seed in normotensive and hypertensive rats. Rev. Bras. Farmacogn. 26: 619-626.
  • Yusni, Y., Zufry, H., Meutia, F. and Sucipto, K.W. (2018). The effects of celery leaf (Apium graveolens L.) treatment on blood glucose and insulin levels in elderly pre-diabetics. Saudi Med. J. 39: 154-156.
  • Chen, X.Q., Qiu, K., Liu, H., He, Q., Bai, J.H. and Lu, W. (2019). Application and prospects of butylphthalide for the treatment of neurologic diseases. Chin. Med. J. 132: 1467-1477.
  • Kilari, E.K. and Putta, S. (2016). Biological and phytopharmacological descriptions of Litchi chinensis. Pharmacogn. Rev. 10: 60-65.
  • Lucero, M., Estell, R., Tellez, M. and Fredrickson, E. (2009). A retention index calculator simplifies identification of plant volatile organic compounds. Phytochem. Anal. 20: 378-384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.