58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Beneficial Role of Multi-Walled Carbon Nanotubes on Physiological and Phytochemical Responses of Mentha piperita L under Salinity Stress

, &
Pages 323-342 | Received 28 Jul 2022, Accepted 09 Feb 2023, Published online: 03 May 2023

References

  • Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., and Wang, Q. (2018). Response of Plant Secondary Metabolites to Environ-mental Factors. Molecules. 23(4): 762.
  • Ottow, E.A., Brinker, M., Teichmann, T., Fritz, E., Kaiser, W., Brosche, M. (2005). Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohy-drates, and develops leaf succulence under salt stress. Plant Physiol. 139(4): 1762-72.
  • Najafi, F., Khavari-Nejad, R.A., and Siah Ali. M. (2010). The Effects of Salt Stress on Certain Physiological Parameters in Summer Savory (Satureja hortensis L.) Plants. J. Stress. Physiol. Biochem. 6: 13-21.
  • Bettaieb, I., Zakhama, N., Aidi Wannes, W., Kchouk, M.E., Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hort. 120(2): 271-275.
  • Al-Amira, H., and Cracker, L.E. (2007). In vitro selection for stress tolerant spearmint. Issues in New Crops and New Uses. 306-310.
  • Zhao, C., Zhang, H., Song, C., Zhu, J.K., Shabala, S. (2020). Mechanisms of Plant Responses and Adaptation to Soil Salinity. The Innovation. 1(1): 100017: 1-41.
  • Jose Ramón, A.M., Maria, F.O., Agustina, B.V., Pedro, D.V., Maria, J.S.B and Jose, A.H. (2017). Plant Responses to Salt Stress: Adapt. Mech. Agron. 7: 1-38.
  • Zamani, K., Allahbakhshi, N., Akhavan, F., Yousefi, M., et al. (2021). Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeroginosa. BMC biotech. 21(68): 1-11.
  • Ramezani, F., Behroozi, Z., Rahimi, B., Hamblin, M., et al. (2022). Injection of Cerium Oxide nanoparticles to Treat Spinal Cord Injury in Rats. J. Neuropathol. Exp. Neurol. 81(8): 635-642.
  • Arora, B., and Attri, P. (2020). Carbon Nanotubes (CNTs): A Potential Nanomaterial for Water Purification. J. Compos. Sci. 4: 135-155.
  • Eatermadi, A., Darae, H., Karimkhanloo, H., Koui, M., Zarghami, N., Akbarzadeh, A. (2014). Carbon nanotubes: properties, synthesis, purification, and applications. Nano. Res. Lett. 9: 517-535.
  • Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 3: 3221-7.
  • Khodakovskaya, M., Kim, B., Kim, J., Alimohammdi, M., Dervishi, E., Mustafa, T. (2013). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 9: 115-23.
  • Tafrihi, M., Imran, M., Tufail, T., Gondal, T.A., Caruso, G., Sharma, S., Sharma, R., Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P. (2021). The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules. 26: 1118-1140.
  • Tiwari, D.K., Dasgupta-Schubert, N., Villaseoor Cendejas, N., Villegas, J., Carreto Montoya, L., Garca, S.E.B. (2014). Inter-facing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. App. Nanosci. 4: 577-91.
  • Martínez-Ballesta, M.C., Zapata, L., Chalbi, N., Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J. Nanobio.14: 1-14.
  • Esmaeili, H., Hadian, J., Hossien Mirjalili, M., Rezadoost, H. (2018). Effect of Multi-walled Carbon Nanotubes and Salinity Stress on Morphological and Phytochemical Characteristics of Satureja rechingeri Jamzad In Vitro. Plant. Prod. Technol. 10(1): 47-58.
  • Buleandra, M., Oprea, E., Elena, P.D., Iulia, G.D., Moldovan, Z., Mihai, I., and Adriana, I.B. (2016). Comparative Chemical Analysis of Mentha piperita and M. spicata and a Fast Assessment of Commercial Peppermint Teas. Nat. Prod. Commun. 11(4): 551-555.
  • Barrs, H., Weatherley, P. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aus. J. Biol. Sci. 15: 413-428.
  • Arnon, I. (1975). Physiological principles of dryland crop production. Physiological Aspects of Dryland Farming. US Gupta, ed, 391 p.
  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology.105: 121-126.
  • Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
  • Bates, L., Waldren, R., Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205-207.
  • Spínola, V., Llorent-Martínez, E.J., Gouveia, S., Castilho, P.C. (2014). Myrica faya: a new source of antioxidant phytochemicals. J. Agri. Food. Chem. 62: 9722-9735.
  • Adams, R.P. (2007). Identification of Essen-tial Oil Components by Gas Chromatography/Mass Spectroscopy. 4th ed. Allured Publishing, IL.
  • Tashakori-Miyanroudi, M., Rakhshan, K., Ramez, M., Asgarian, S., Janzadeh, A. (2020). Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. Int. J. Biol. Macromol. 63: 1136-1146.
  • Hatami, M., Hadian, J., Ghorbanpour, M. (2016). Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J. Haz. Mat. 324: 306-320.
  • Anjali, J., Simranjeet, K., Keya, D., Harsh, N., and Gaurav, V. (2018). Multi-walled carbon nanotubes applied through seed-priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). J. Sci. Food Agric. 98: 3148-3160
  • Shrestha, B., Acosta-Martinez, V., Cox, SB., Green, MJ., Li, S., and Cañas-Carrell, J.E. (2013). An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J. Hazard Mater. 261: 188-197.
  • Taha, R.A., Hassan, M.M., Ibrahim, E.A., Baker, N.H.A., Shaaban, E.A. (2016). Carbon nanotubes impact on date palm in vitro cultures. Plant Cell Tissue Organ Culture. 127: 525-534.
  • Han, J.H., Paulus, G.L., Maruyama, R., Heller, D.A., Kim, W.J., Barone, P.W., Lee, C. Y., Choi, J.H., Ham, M.H., Song, C. (2010). Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nat. Mat. 9: 833-839.
  • Giraldo, J.P., Landry, M.P., Faltermeier, S.M., Mc-Nicholas, T.P., Iverson, N.M., Boghossian, A.A., Reuel, N.F., Hilmer, A.J., Sen, F., Brew, J.A. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat.Mat.13: 400-408.
  • Karami, A., Sepehri, A. (2018). Benefi-cial role of MWCNTs and SNP on growth, physiological and photosynthesis performance of barley under NaCl Stress. J. Soil Sci. Plant Nut. 18(3): 752-771.
  • Ghorbanpour, M., Hadian, J. (2015). Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon. 94: 749-59.
  • Nokandeh, S., Ramezani, M., Gerami, M. (2020). The physiological and biochemical responses to engineered green graphene/metal nanocomposites in Stevia rebaudiana. J. Plant Biochem. Biotechnol. 1-7.
  • Badihi, L., Gerami, M., Akbarinodeh, D., Shokrzadeh, M., Ramezani, M. (2021). Physio-chemical responses of exogenous calcium nanoparticle and putrescine polyamine in Saffron (Crocus sativus L.). Physiol. Mol. Biol. Plants. 1-15
  • Ramezani, M., Ramezani, F., Gerami, M. (2019). Nanoparticles in Pest Incidences and Plant Disease Control. In: Panpatte D., Jhala Y. (eds) Nanotechnology for Agriculture: Crop Production & Protection. Springer, Singapore.
  • Soraki, R.K., Gerami, M., Ramezani, M. (2021). Effect of graphene / metal nano-composites on the key genes involved in rosmarinic acid biosynthesis pathway and its accumulation in Melissa officinalis. BMC Plant Biol 21(260): 1-14.
  • Ramezani, M., Asghari, S., Gerami, M., Ramezani, F., Abdolmaleki, M.K. (2019). Effect of Silver Nanoparticle Treatment on the Expression of Key Genes Involved in Glycosides Biosynthetic Pathway in Stevia rebaudiana B. Plant. Sugar Tech. 1-10.
  • Sheikhalipour, M., Esmaielpour, B., Behnamian, M., Gohari, G. (2021). Chitosan-Selenium Nanoparticle (Cs-Se NP) Foliar Spray Alleviates Salt Stress in Bitter Melon. Nanomat. 11(3): 684.
  • Khan, I., Ali Raza, M., Afzal Awan, S., Abbas Shah, G. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem. 156: 221-232.
  • McKiernan, A.B., O’Reilly-Wapstra, J.M., Price, C., Davies, N.W., Potts, B.M., Hovenden, M.J. (2012). Stability of plant defensive traits among populations in two Eucalyptus species under elevated carbon dioxide. J. Chem. Ecol. 38: 204-212.
  • Sadeghi, H., Jamalpoor, S., Shirzadi, M.H. (2014). Variability in essential oil of Teucrium polium L. of different latitudinal populations. Indust. Crop. Prod. 54: 130-134.
  • Veronese, P., Li, X., Niu, X., Weller, S.C., Bressan, R.A., Hasegawa, P.M. (2001). Bioengineering mint crop improvement. PCTOC. 64: 133-144.
  • Roodbari, N., Roodbari, S., Ganjali, A., Ansarifar, M. (2013). The Effect of Salinity Stress on Growth Parameters and Essential oil percentage of Peppermint (Mentha piperita L.). Int. J. Basic. App. Sci. 2(1): 294-299.
  • Razmjoo, K., Heydarizadeh, P., Sabzalian, M.R. (2008). Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int. J. Agri. Biol. 10: 451-454.
  • Dadkhah, A.R. (2010). Effect of salt stress on growth and essential oil of Matricaria chamomilla. Int. Res. J. Biol. Sci. 5: 643-646.
  • Thakur, M., Bhatt, V., Kumar, R. (2019). Effect of shade level and mulch type on growth, yield and essential oil composition of damask rose (Rosa damascena Mill.) under mid hill conditions of Western Himalayas. PLoS ONE. 14(4): e0214672.
  • Zubillaga, M.S., Lavado, R.S. (2002). Heavy metal content in lettuce plants grown in biosolids compost. Comp Sci Util. 10(4): 363-367.
  • Stankovic, M. (2019). Lamiaceae Species: Biology, Ecology and Practical Uses. Plants. MDPI publication. 1-127.
  • Mahmoud, S.S., Croteau, R.B. (2003). Menthofuran regulates essential oil biosyn-thesis in peppermint by controlling a down-stream monoterpene reductase. Proceedings of the National Academic Science of USA.100: 14481-14486.
  • Tounekti, T., Vadel, A.M., Bedoui, A., Khemira, H. (2008). NaCl stress affects growth and essential oil composition in rosemary (Rosmarinus officinalis L.). J. Hort. Sci. Biotechnol. 83: 267-273.
  • Alaei, S., Khosh-Khui, M., Kobraee, S., Zaji, B. (2014). Effect of different salinity levels on essential oil content and compo-sition of Dracocephalum moldavica. Agri commun. 2: 42-46.
  • Carmen Martínez-Ballesta, M., Zapata, L., Chalbi, N., and Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J. Nanobiotechnol. 14(1): 42.
  • Gohari, Gh., Safai, F., Panahirad, S., Akbari, A., Rasouli, F., Dadpour, M.R. (2020). Modified multiwall carbon nanotubes display either phytotoxic or growth pro-moting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chem. 249. 126171-12184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.