97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Micromeria biflora Benth: Phytochemical Analysis and in vitro Biological Investigations of Essential Oil with Concomitant in silico Molecular Docking, PASS Prediction and ADME/Tox Studies

, , , , , , & show all
Pages 261-293 | Received 29 Aug 2022, Accepted 05 Apr 2023, Published online: 11 Jun 2023

References

  • Mabberley, D.J. (2017). Mabberley’s Plant-Book A portable dictionary of plants, their classification and uses. Cambridge University Press, Cambridge, UK. 1102
  • Britannica, T. (2020). Editors of Encyclopaedia. Argon. Encyclopedia Britannica. https://www.britannica.com/plant/Lamiaceae. Accessed 28 October 2021
  • Nagarkoti, K., Kanyal, J., Prakash, O., Kumar, R., Rawat, D.S. and Pant, A.K. (2021). Ajuga L.: A Systematic Review on Chemical Composition, Phytopharmacological and Biological Potential. Curr. Bioact. Compd. 17(9): 11-37.
  • Hossan, M.S., Rahman, S., Bashar, A.B. M.A., Jahan, R., Al-Nahain, A. and Rahmatullah, M. (2014). Rosmarinic acid: A review of its anticancer action. World J. Pharm. Sci. 3(9): 57-70.
  • Kabera, J.N., Semana, E., Mussa, A.R. and He, X. (2014). Plant secondary meta-bolites: biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2(7): 377-392.
  • Mishra, L.K., Sarkar, D. and Shetty, K. (2019). Human health-relevant bioactives and associated functionalities of herbs in the Lamiaceae family. In Functional Foods and Biotechnology: 115-131. CRC Press.
  • Özkan, M. (2008). Glandular and eglandular hairs of Salvia recognita Fisch. & Mey.(Lamiaceae) in Turkey. Bangladesh J. Bot. 37(1): 93-95.
  • Plants of the World Online (2017) Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved 28 January 2022
  • Ryding, O. (2007). Revision of the Micro-meria (Labiateae) in tropical to southern Africa and on the Arabian Peninsula. Bot. J. Linn. Soc. 155(3): 427-446.
  • Janardhanan, K.P. (1973). On the Occur-rence of Micromeria biflora (Buch.-Ham. Ex D. Don) Benth. Var. Hispida Kitamura & Murata (Lamiaceae) in Western Himalaya Nelumbo. 15(1-2): 128-128.
  • Chandra M., Prakash, O., Bachheti, R.K., Kumar, M., Pant, A.K. (2013). Essential oil composition and pharmacological activities of Micromeria biflora (Buch.-Ham. Ex D. Don) Benth. collected from Uttarakhand region of India. J. Med. Plant Res. 4(35): 2538-2544.
  • Mallavarapu, G.R., Ramesh, S., Subrah-manyam, K. (1997). Composition of the essential oil of Micromeria biflora. J. Essent. Oil Res. 9(1): 23-26.
  • Ding, J., Xuejian, Y., Yu, W., Ding, Z., Chen, Z., Hayashi, N., Komae, H. (1994). Aromatic components of the essential oils of four Chinese medicinal plants (Asarum petelotii, Elsholtzia souliei, Eupatorium adenophorum, Micromeria biflora) in Yunnan. Z. Naturforsch. C. 49(11-12): 703-706.
  • Mishra, R.K., Kumar, A., Shukla, A.C., Tiwari, P., Dikshit, A. (2010). Quantitative and rapid antibacterial assay of Micromeria biflora Benth. leaf essential oil against dental caries causing bacteria using phylogenetic approach. J. Ecobiotechnol. 2(4): 22-26.
  • Kumar, V., Shekhar Mathela, C. (2017). Toxicity and repellent effect of essential oils and a major component against Lipaphis erysimi. J. Crop Prot. 6(1): 15-23.
  • Zeb, M.A., Wahab, A., Ullah, N., Pandey, S., Muhammad, T. (2015). Antibacterial and antifungal activities of Micromeria biflora (Leaves). Int. J. Med. Sci. 1(1): 28-34.
  • European Pharmacopoeia (1997) Council of Europe: Strasbourg, 3rd ed, France, 121
  • Gogoi, R., Loying, R., Sarma, N., Munda, S., Pandey, S.K. and Lal, M. (2018). A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Ind. Crops Prod. 125: 131-139.
  • Lal, M., Begum, T., Gogoi, R., Sarma, N., Munda, S., Pandey, S.K., Baruah, J., Tamang, R. and Saikia, S. (2022). Anethole rich Clausena heptaphylla (Roxb.) Wight & Arn., essential oil pharmacology and genotoxic efficiencies. Sci. Rep. 12(1): 9978.
  • Gogoi, R., Begum, T., Sarma, N., Pandey, S.K., Bhandari, S., Saikia, S., Tamang, R., Saikia, R.J. and Lal, M. (2022). Elemicin-rich Cymbopogon khasianus (Hack) Stapf (ex Bor) Essential Oil: Pharmacological Effects, Toxicological Investigation, and Compo-sitional Analysis. Curr. Anal. Chem. 18(10): 1092-1107.
  • Rawat, A., Kholiya, S., Chauhan, A., Venkatesha, K.T., Kumar, D., Upadhyay, R.K. and Padalia, R.C. (2023). Chemical variability on Zingiber zerumbet (L.) Roscoe ex Sm. essential oil with respect to different comminution methods. Biochem. Syst. Ecol. 106: 104574.
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry, Allured publishing Co., Carol Stream, IL., USA.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1): 25-30.
  • Kanyal, J., Prakash, O., Kumar, R., Rawat, D.S., Srivastava, R.M., Singh, R.P., Pant, A.K. (2021). Study on comparative chemical composition and biological activities in the essential oils from different parts of Coleus barbatus (Andrews) Bent. ex G. Don. J. Essent. Oil-Bear. Plants. 24(4): 808-825.
  • Pulido, R., Bravo, L., Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agri. Food Chem. 48(8): 3396-3402.
  • Al-Abd, N.M., Mohamed Nor, Z., Mansor, M., Azhar, F., Hasan, M.S., Kassim, M. (2015). Antioxidant, antibacterial activity, and phytochemical characterization of Mela-leuca cajuputi extract. BMC Complement. Altern. Med. 15(1): 1-13.
  • Marles, R.J., Farnsworth, N.R. (1995). Antidiabetic plants and their active constituents. Phytomed. 2(2): 137-189.
  • Hussey, R.S. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep. 57: 1025-1028.
  • Belles, X., Camps, F., Coll, J., Piulachs, M.D. (1985). Insect antifeedant activity of clerodane diterpenoids against larvae of Spodoptera littoralis (Boisd.)(Lepidoptera). J. Chem. Ecol. 11(10): 1439-1445.
  • Cole, R.A. (1994). Isolation of a chitin binding lectin, with insecticidal activity in chemically defined synthetic diets, from two wild brassica species with resistance to cabbage aphid Brevicoryne brassicae. Entomol. Exp. Appl. 72(2): 181-187.
  • Koorki, Z., Shahidi-Noghabi, S., Mahdian, K., Pirmaoradi, M. (2018). Chemical composition and insecticidal properties of several plant essential oils on the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae). J. Essent. Oil-Bear. Plants. 21(2): 420-429.
  • Balouri, M., Sadiki, M. (2016). Ibnsouda, K.S. Methods for In vitro evaluating anti-microbial activity: A review. J. Pharm. Anal. 6(2): 71-9.
  • Bishop, C.D. and Thornton, I.B. (1997). Evaluation of the antifungal activity of the essential oils of Monarda citriodora var. citriodora and Melaleuca alternifolia on post-harvest pathogens. J. Essent. Oil Res. 9(1): 77-82.
  • McKinney, H.H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sati-vum. J. Agri. Res. 26(5): 195-218.
  • Bozok, F. (2018). Herbicidal activity of Nepeta flavida essential oil. J. Essent. Oil-Bear. Plants. 21(6): 1687-1693.
  • Rawat, A., Thapa, P., Prakash, O., Kumar, R., Pant, A.K., Srivastava, R.M. and Rawat, D.S. (2019). Chemical composition, herbicidal, antifeedant and cytotoxic activity of Hedychium spicatum Sm.: A Zingiberaceae herb. Trends Phytochem. Res. 3(2): 123-136.
  • Kollu, U., Avula, V.K.R., Vallela, S., Pasu-puleti, V.R., Zyryanov, G.V., Neelam, Y.S. and Chamarthi, N.R. (2021). Synthesis, antioxidant activity and bioinformatics studies of L-3-hydroxytyrosine templated N-alkyl/aryl substituted urea/thioureas. Bioorg. Chem. 111: 104837.
  • Sui, X., Zhang, Y. and Zhou, W. (2016). In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic a-amylase. J. Funct. Foods. 21: 50-57.
  • Grigorev, V., Tinkov, O., Grigoreva, L. and Rasdolsky, A. (2022). Structural fractal analysis of the active sites of acetyl-cholinesterase from various organisms. J. Mol. Graph. Model. 116: 108265.
  • Luo, J., Zhang, Z., Li, D., Liu, J., Li, K., Sun, X. and He, L. (2021). Identification and functional analysis of SlitOBP11 from Spodoptera litura. Front. Physiol. 12: 619816.
  • Hu, Y., Liu, X., Wu, X., Zhang, Z., Wu, D., Chen, C., Su, W., Zhang, L., Li, J. and Wang, H.M.D. (2022). Several natural phytochemicals from Chinese traditional fermented food-pickled Raphanus sativus L.: Purification and characterization. Food Chem. 15: 100390.
  • Naik, N.S., Shastri, L.A., Joshi, S.D., Dixit, S.R., Chougala, B.M., Samundeeswari, S., Holiyachi, M., Shaikh, F., Madar, J., Kulkarni, R. and Sunagar, V. (2017). 3, 4-Dihydropyrimidinone-coumarin analogues as a new class of selective agent against S. aureus: Synthesis, biological evaluation and molecular modelling study. Bioorg. Med. Chem. 25(4): 1413-1422.
  • Manish, M., Lynn, A.M. and Mishra, S. (2020). Cytochrome P450 2C9 polymorphism: Effect of amino acid substitutions on protein flexibility in the presence of tamoxifen. Comput. Biol. Chem. 84:107166.
  • Meenambiga, S.S., Rajagopal, K. and Durga, R. (2015). In silico docking studies on the components of inonotus sp., a medicinal mushroom against cyclooxygenase-2 enzyme. Asian J. Pharm. Clin. Res. 8(3): 142-145.
  • Adnan, M., Nazim Uddin Chy, M., Mostafa Kamal, A.T.M., Azad, M.O.K., Paul, A., Uddin, S.B., Barlow, J.W., Faruque, M.O., Park, C.H., Cho, D.H. (2019). Investigation of the biological activities and characterization of bioactive constituents of Ophiorrhiza rugosa var. prostrata (D. Don) & Mondal leaves through in vivo, in vitro, and in silico approaches. Molecules. 24(7): 1367.
  • Foudah, A.I., Alqarni, M.H., Alam, A., Salkini, M.A., Alam, P., Alkholifi, F.K., Yusufoglu, H.S. (2021). Determination of chemical composition, in vitro and in silico evaluation of essential oil from leaves of Apium graveolens grown in Saudi Arabia. Molecules. 26(23): 7372.
  • Han, Y., Zhang, J., Hu, C.Q., Zhang, X., Ma, B. and Zhang, P. (2019). In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol. 10: 434.
  • Müller-Riebau, F.J., Berger, B.M., Yegen, O. and Cakir, C. (1997). Seasonal variations in the chemical compositions of essential oils of selected aromatic plants growing wild in Turkey. J. Agric. Food Chem. 45(12): 4821-4825.
  • Bakkour, Y., Alwan, S., Soufi, H., El-Ashi, N., Tabcheh, M., El Omar, F. (2012). Chemical composition of essential oil extracted from Micromeria barbata growing in Lebanon and their antimicrobial and antioxidant properties. J. Nat. Prod. 5: 116-120.
  • Sarikurkcu, C., Ceylan, O., Zeljković, S.Ć. (2019). Micromeria myrtifolia: Essential oil composition and biological activity. Nat. Prod. Commun. 14(6): 1934578X19851687.
  • Formisano, C., Oliviero, F., Rigano, D., Saab, A.M., Senatore, F. (2014). Chemical composition of essential oils and in vitro antioxidant properties of extracts and essential oils of Calamintha origanifolia and Micromeria myrtifolia, two Lamiaceae from the Lebanon flora Ind. Crop Prod. 62: 405-411.
  • Nafis, A., Kasrati, A., Jamali, C.A., Mezrioui, N., Setzer, W., Abbad, A., Hassani, L. (2019). Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crops Prod. 137: 396-400.
  • Mimica-Dukic, N., Bozin, B., Sokovic, M., Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agri. Food Chem. 52(9): 2485-2489.
  • Salameh, N., Shraim, N., Jaradat, N. (2018). Chemical composition and enzymatic screening of Micromeria fruticosa serpyllifolia volatile oils collected from three different regions of West Bank, Palestine. BioMed Res. Int. 2018.
  • Capetti, F., Cagliero, C., Marengo, A., Bicchi, C., Rubiolo, P., Sgorbini, B. (2020). Bio-guided fractionation driven by in vitro á-amylase inhibition assays of essential oils bearing specialized metabolites with potential hypoglycemic activity. Plants. 9(9): 1242.
  • Ntalli, N.G., Ferrari, F., Giannakou, I., Menkissoglu-Spiroudi, U. (2010). Phyto-chemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J. Agri. Food Chem. 58(13): 7856-7863.
  • Leela, N.K., Khan, R.M., Reddy, P.P., Nidiry, E.S.J. (1992). Nematicidal activity of essential oil of Pelargonium graveolens against the root-knot nematode Meloidogyne incognita. Nematol. Mediterr. 20: 57-58.
  • Andrés, M.F., González-Coloma, A., Sanz, J., Burillo, J., Sainz, P. (2012). Nematicidal activity of essential oils: a review. Phytochem. Rev. 11(4): 371-390.
  • Echeverrigaray, S., Zacaria, J., Beltrão, R. (2010). Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathol. 100(2): 199-203.
  • Romero, N.R., Andrade-Neto, M., Gon-çalves, F.J., Nascimento, R.R., Bezerra, F.S., de Oliveira, M.C., Barbosa, F.G., Bezerra, A.M., Mafezoli, J.S. (2006). Nematicidal activity of the essential oils from Pilocarpus microphyllus (Rutaceae) samples. Nat. Prod. Commun. 1(6): 469-473.
  • Nerio, L.S., Olivero-Verbel, J., Stashenko, E. (2010). Repellent activity of essential oils: a review. Bioresour. Technol. 101(1): 372-378.
  • Pavela, R. (2014). Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 60: 247-258.
  • Kaur, G., Ganjewala, D., Bist, V., Verma, P.C. (2019). Antifungal and larvicidal activities of two acyclic monoterpenes; citral and geraniol against phytopathogenic fungi and insects. Arch. Phytopathol. Plant Prot. 52 (5-6): 458-469.
  • Santana, O., Cabrera, R., González-Coloma, A., Sánchez-Vioque, R., De los Mozos-Pascual, M., Rodríguez-Conde, M.F., Laserna-Ruiz, I., Usano-Alemany, J., Herraiz, D. (2012). Chemical and bio-logical profiles of the essential oils from aromatic plants of agro industrial interest in Castilla-La Mancha (Spain). Grasas y Aceites. 63(2): 214-222.
  • Nguyen, N.B.C., Nguyen, B.Q., Dong, T.C.T. (2019). Antifeedant activity of essential oil Lantana camara L. against Spodoptera litura Fabr.(Lepidoptera: Noctuidae) and Plutella xylostella Curtis (Lepidoptera: Plutellidae). Can Tho University Journal of Science. 11(1): 1-6.
  • Karakoç, Ö.C., Alkan, M., Şimşek, Ş., Gökçe, A. and Halit, Ç.A.M. (2018). Fumigant activity of some plant essential oils and their consustent against to Stegobium paniceum and Lasioderma serricorne (Coleoptera: Anobidae). Plant Prot. Bull. 58(3): 163-169.
  • Gouvêa, S.M., Carvalho, G.A., Fidelis, E.G., Ribeiro, A.V., Farias, E.S., Picanço, M.C. (2019). Effects of paracress (Acmella oleracea) extracts on the aphids Myzus persicae and Lipaphis erysimi and two natural enemies. Ind. Crops Prod. 128: 399-404.
  • Çalmaşur, Ö., Aslan, İ., Şahin, F. (2006). Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Ind. Crops Prod. 23(2): 140-146.
  • Ikbal, C., Pavela, R. (2019). Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 92(3): 971-986.
  • Inouye, S., Takizawa, T., Yamaguchi, H. (2001). Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 47(5): 565-73.
  • Alizadeh, A., Ranjbaran, J. (2017). Chemical composition and antimicrobial activity of Micromeria hedgei Rech. f. oil from Iran. Nat. Prod. Res. 31(2): 210-213.
  • Duru, M.E., Öztürk, M., Uður, A., Ceylan, Ö. (2004). The constituents of essential oil and in vitro antimicrobial activity of Micro-meria cilicica from Turkey. J. Ethno-pharmacol. 94(1): 43-48.
  • Kumar, A., Gupta, R., Mishra, R.K., Shukla, A.C., Dikshit, A. (2012). Pharmaco-phylogenetic investigation of Micromeria biflora Benth and Citrus reticulata Blanco. Natl. Acad. Sci. Lett. 35(4): 253-257.
  • Nguyen, L.T., Myslivečková, Z., Szotá-ková, B., Špičáková, A., Lněničková, K., Ambrož, M., Kubíček, V., Krasulová, K., Anzenbacher, P., Skálová, L. (2017). The inhibitory effects of b-caryophyllene, b-caryophyllene oxide and a-humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro. Chem.-Biol. Interact. 278: 123-128.
  • El-Seedi, H.R., Khattab, A., Gaara, A.H., Mohamed, T.K., Hassan, N.A., El-kattan, A.E. (2008). Essential oil analysis of Micro-meria nubigena HBK and its antimicrobial activity. J. Essent Oil Res. 20(5): 452-456.
  • Chaturvedi, T., Singh, S., Nishad, I., Kumar, A., Tiwari, N., Tandon, S., Saikia, D. Verma, R.S. (2021). Chemical compo-sition and antimicrobial activity of the essential oil of senescent leaves of guava (Psidium guajava L.). Nat. Prod. Res. 35(8): 1393-1397.
  • Chutia, M., Bhuyan, P.D., Pathak, M.G., Sarma, T.C., Boruah, P. (2009). Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT-Food Sci. Technol. 42(3): 777-780.
  • Mastelic, J., Politeo, O., Jerkovic, I., Radosevic, N. (2005). Composition and anti-microbial activity of Helichrysum italicum essential oil and its terpene and terpenoid fractions. Chem. Nat. Compd. 41(1): 35-40.
  • Swamy, M.K., Akhtar, M.S., Sinniah, U.R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid.-Based Complement. Altern. Med. Article ID 3012462.
  • Nikolova, M., Traykova, B., Yankova-Tsvetkova, E., Stefanova, T., Dzhurmanski, A., Aneva, I., Berkov, S. (2021). Herbicide Potential of Selected Essential Oils From Plants of Lamiaceae and Asteraceae Families. Acta Agrobot. 74.
  • Kong, C., Hu, F., Xu, X. (2002). Allelopathic potential and chemical constituents of volatiles from Ageratum conyzoides under stress. J. Chem. Ecol. 28(6): 1173-1182.
  • Azirak, S., Karaman, S. (2008). Allelo-pathic effect of some essential oils and components on germination of weed species. Acta Agriculturae Scandinavica. Section B. Soil and Plant Science. 58(1): 88-92.
  • Martino, L.D., Mancini, E., Almeida, L.F.R.D., Feo, V.D. (2010). The antigerminative activity of twenty-seven monoterpenes. Molecules. 15(9): 6630-6637.
  • Singh, H.P., Batish, D.R., Kaur, S., Ramezani, H., Kohli, R.K. (2002). Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann. Appl. Biol. 141(2): 111-116.
  • Abrahim, D., Braguini, W.L., Kelmer-Bracht, A.M., Ishii-Iwamoto, E.L. (2000). Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 26(3): 611-624.
  • Kabdal, T., Himani, Kumar, R., Prakash, O., Nagarkoti, K., Rawat, D.S., Srivastava, R.M., Kumar, S., Dubey, S.K. (2022).Seasonal variation in the essential oil compo-sition and biological activities of Thymus linearis Benth. Collected from the Kumaun region of Uttarakhand, India. Biochem. Syst. Ecol. 103.
  • Domínguez-Villa, F.X., Durán-Iturbide, N.A., Ávila-Zárraga, J.G. (2021). Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl) indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem. 106: 104497.
  • Awadelkareem, A.M., Al-Shammari, E., Elkhalifa, A.E.O., Adnan, M., Siddiqui, A.J., Snoussi, M., Khan, M.I., Azad, Z.A.A., Patel, M. and Ashraf, S.A. (2022). Phytochemical and in silico ADME/Tox Analysis of Eruca sativa extract with antioxidant, antibacterial and anticancer potential against Caco-2 and HCT-116 colorectal carcinoma cell lines. Molecules. 27(4): 1409.
  • Anandan, S., Gowtham, H.G., Shiva-kumara, C.S., Thampy, A., Singh, S.B., Murali, M., Shivamallu, C., Pradeep, S., Shilpa, N., Shati, A.A. and Alfaifi, M.Y. (2022). Integrated approach for studying bioactive compounds from Cladosporium spp. against estrogen receptor a as breast cancer drug target. Sci. Rep. 12(1): 1-16.
  • Veber, D.F., Johnson, S.R., Cheng, H.-Y., Smith, B.R., Ward, K.W., Kopple, K.D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45: 2615-2623.
  • Kamel, M.S., Belal, A., Aboelez, M.O., Shokr, E.K., Abdel-Ghany, H., Mansour, H.S., Shawky, A.M. and El-Remaily, M.A.E.A.A.A. (2022). Microwave-assisted synthesis, biological activity evaluation, molecular docking, and ADMET studies of some novel pyrrolo [2, 3-b] pyrrole derivatives. Molecules. 27(7): 2061.
  • Banerjee, P. and Ulker, O.C. (2022). Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol. Mech. Meth. 1-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.