28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Chemical Composition and Therapeutic Acti-vities of Clausena excavata Burm.: An Important Medicinal Plant of Eastern Ghats of India

, , , , , , , & show all
Pages 502-521 | Received 13 Dec 2022, Accepted 18 May 2023, Published online: 11 Jun 2023

References

  • Mou, F., Li, S., Peng, Y. and Li, Y. (2021). Taxonomic notes on some species in the genus Clausena (Rutaceae) in China based on molecular and morphological data. Isr. J. Plant Sci. 68(4): 297-305. doi: 10.1163/22238980-bja10038
  • Li, Q., Chang, X., Guo, R., Wang, Q. and Guo, X. (2018). Dynamic effects of fermen-tation on phytochemical composition and antioxidant properties of wampee (Clausena lansium (Lour.) Skeel) leaves. Food. Sci. Nutr. 7(1): 76-85. doi: 10.1002/fsn3.795
  • Musa, A., Aminah, N.S., Davies-Bolorunduro, O.F., Kristanti, A.N., Islami, A.I., Wai, T.S. and Naing, T.T.S.P. (2022). Antimicrobial activities of the extracts and secondary metabolites from Clausena genus-A review. Open Chem. 20(1): 627-650. doi: 10.1515/chem-2022-0176
  • Ismail, A.A., Ahmad, B.A., Mohamed, A., Rasedee, A., Siddig, I.A. and Syam, M. (2011). Clausena excavata Burm. f. (Rutaceae): A review of its traditional uses, pharmacological and phytochemical properties. J. Med. Plant Res. 5(33): 7177-7184.
  • Huang, L., Zhe-Ling, F.E.N.G., Yi-Tao, W.A.N.G. and Li-Gen, L.I.N. (2017). Anticancer carbazole alkaloids and coumarins from Clausena plants: A review. Chin. J. Nat. Med. 15(12): 881-888.
  • Su, X.F., Huang, L.J. and Feng, P.Z. (2011). Chemical composition analysis and antimicrobial activity of volatile oil from the nutlets of Clausena anisumolens. Food Sci. 32: 30-32.
  • Agyepong, N., Agyare, C., Adarkwa-Yiadom, M. and Gbedema, S.Y. (2014). Phytochemical investigation and anti-microbial activity of Clausena anisata (Willd), Hook. Af. J. Tradit. Complem. Alternat. Med. 11(3): 200-209. doi: 10.4314/ajtcam.v11i3.28
  • Arsia, T.Y. (2016). Antibacterial activities of silver nanoparticles synthesized from Clausena anisata (Willd.) Hook f ex Benth (Rutacae). Innov. J. Ayruvedic. Sci. 4: 22-29.
  • Makirita, E.W., Chauka, J.L. and Chacha, M. (2016). Antimicrobial and cytotoxicity activity of Clausena anisata, Acokanthera shemperii and Olea europaea growing in Tanzania. Eur. J. Med. Plant. 14(2): 1-9. doi: 10.9734/EJMP/2016/23635
  • Kumar, R., Saha, A. and Saha, D. (2012). A new antifungal coumarin from Clausena excavata. Fitoterapia. 83(1): 230-233. doi: 10.1016/j.fitote.2011.11.003
  • He, X., Zhang, L., Chen, J., Sui, J., Yi, G., Wu, J. and Ma, Y. (2019). Correlation between chemical composition and antifungal activity of clausena lansium essential oil against candida spp. Molecules. 24(7): 1394. doi: 10.3390/molecules24071394
  • Wang, Y.S., He, H.P., Yang, J.H., Di, Y.T. and Hao, X.J. (2008). New monoterpenoid coumarins from Clausena anisum-olens. Molecules. 13(4): 931-937. doi: 10.3390/molecules13040931
  • Govindarajan, M. (2010). Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pacific J. Trop. Med. 3(11): 874-877. doi: 10.1016/S1995-7645(10)60210-6
  • Irungu, B.N., Mbabu, M.J., Kiboi, D.M., Moindi, E., Kinyua, J. and Mwirichia, R.K. (2012). In vivo antimalarial and acute toxicity properties of hexane and chloroform extracts from Clausena anisata (Willd.) Benth. Afr. J. Pharmacol. Ther. 1(1): 24-29.
  • Murungi, J.M. (2013). Antimalarial activity and safety properties of Clausena anisata and Clutia robusta in a mouse model. Digital Repository. http://ir.jkuat.ac.ke/handle/123456789/957.
  • Williams, A.R., Soelberg, J. and Jager, A.K. (2016). Anthelmintic properties of traditional African and Caribbean medicinal plants: identification of extracts with potent activity against Ascaris suum in vitro. Parasite. 23: 1-6. doi: 10.1051/parasite/2016024
  • Thongthoom, T., Songsiang, U., Phaosiri, C. and Yenjai, C. (2010). Biological activity of chemical constituents from Clausena harmandiana. Arch. Pharm. Res. 33: 675-680. doi: 10.1007/s12272-010-0505-x
  • Guo, S.S., Wang, Y., Chen, Z.Y., Zhang, Z., Cao, J.Q., Pang, X., Geng, Z.F. and Du, S.S. (2018). Essential oils from Clausena species in China: Santalene Sesqui-terpenes resource and toxicity against Liposcelis bostrychophila. J. Chem. Article ID 7813675.
  • Lal, M., Begum, T., Gogoi, R., Sarma, N., Munda, S., Pandey, S.K., Baruah, J., Tamang, R. and Saikia, S. (2022). Anethole rich Clausena heptaphylla (Robx.) Wight & Arn., essential oil pharmacology and genotoxic efficiencies. Sci. Rep. 12: 9978. doi: 10.1038/s41598-022-13511-8
  • Cheng, S.S., Chang, H.T., Lin, C.Y., Chen, P.S., Huang, C.G., Chen, W.J. and Chang, S.T. (2009). Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest. Sci. 65(3): 339-343. doi: 10.1002/ps.1693
  • Thatoi, H.N., Panda, S.K., Rath, S.K. and Dutta, S.K. (2008). Antimicrobial activity and ethnomedicinal uses of some medicinal plants from Similipal Biosphere Reserve, Orissa. Asian J. Plant Sci. 7(3): 260-267. doi: 10.3923/ajps.2008.260.267
  • Elumalai, K. and Kasinathan, I.K. (2016). Antioxidant activity and phytochemical screening of different solvent extracts Clua-sena excavata burm F. (Rutaceae) MOJ Ecol. Environ. Sci. 1(1): 1-6.
  • Wiart, C., Mogana, S., Khalifah, S., Mahan, M., Ismail, S., Buckle, M., Narayana, A.K. and Sulaiman, M. (2004). Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia. 75: 68-73. doi: 10.1016/j.fitote.2003.07.013
  • Albaayit, S.F.A., Abba, Y., Abdullah, R. and Abdullah, N. (2014). Evaluation of antioxidant activity and acute toxicity of Clausena excavata leaves extract. Evid. Bas. Complem. Alternat. Med. Article ID 975450, 10 page.
  • Ali, A.M., Ismail, N.H., Mackeen, M.M., Yazan, L.S., Mohamed, S.M., Ho, A.S.H. and Lajis, N.H. (2000). Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of Clausena excavata. Pharm. Boil. 38: 298-301. doi: 10.1076/1388-0209(200009)38:4;1-A;FT298
  • Yoshida, T. (1996). Graft compatibility of Citrus with plants in the Aurantioideae and their susceptibility to Citrus tristeza virus. Plant Dis. 80: 414-417. doi: 10.1094/PD-80-0414
  • Behera, S., Monalisa, K., Meher, R.K., Mohapatra, S., Das, P.K., Madkami, S.K., Naik, P.K. and Naik, S.K. (2022). Phytochemical fidelity and therapeutic activity of micropropagated plant Curcuma amada Roxb: an important medicinal herb. Ind. Crop Prod. 176: 11440. doi: 10.1016/j.indcrop.2021.114401
  • Guenther, E. (1972). The production of essential oils. In: Robert, E. (Ed.), The Essential Oils, 1. Krieger, New York. 361-391.
  • Behera, S., Kamila, P.K., Rout, K.K., Barik, D.P., Panda, P.C. and Naik, S.K. (2018). An efficient plant regeneration protocol of an industrially important plant, Hedychium coronarium J. Koenig and establishment of genetic and biochemical fidelity of the regenerants. Ind. Crop Prod. 126: 58-68. doi: 10.1016/j.indcrop.2018.09.058
  • Sutar, J., Monalisa, K., Pati, K., Chauhan, V.B.S. and Behera, S. (2020). Qualitative and quantitative phytochemical analysis and antioxidant activity of Curcuma amada Robx: an important medicinal plant. Plant Arch. 20 (2): 193-196.
  • Naik, M., Behera, S., Indur, S., Babu, S.K. and Naik, P.K. (2023). Elemental, nutritional, phytochemical profiling and antioxidant activity of Cordia obliqua Willd (Clammy Cherry): an important under utilized forest tree of Eastern India. J. Appl. Biol. Biotechnol. 11(1): 195-199.
  • Begum, T., Gogoi, R., Sarma, N., Pandey, S.K. and Lal, M. (2022). Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parvi-flora Wall., ex Baker rhizome essential oil: A high industrially important species. Ind. Crop Prod. 180: 114765. doi: 10.1016/j.indcrop.2022.114765
  • Berker, K.I., Güçlü, K., Demirata, B. and Apak, R. (2010). A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Analytic. Method. 2(11): 1770-1778. doi: 10.1039/c0ay00245c
  • Xiao, Z., Storms, R. and Tsang, A. (2006). Aquantitaive starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 351(1): 146-148. doi: 10.1016/j.ab.2006.01.036
  • Meher, R.K., Pragyandipta, P., Pedapati, R.K., Nagireddy, P.K.R., Kantevari, S., Nayek, A.K. and Naik, P.K. (2021). Rational design of novel N-alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents. Chem. Biol. Drug Des. 98(3): 445-465. doi: 10.1111/cbdd.13901
  • Moharana, A., Kumar, S., Jena, P.K., Naik, S.K., Bal, S. and Barik, D.P. (2014). Comparative antibacterial studies of in vivo and in vitro leaves of Lawsonia inermis L.- A multipurpose medicinal plant. Plant Sci. Res. 35 (1-2): 50-47.
  • Gomez, K.A. and Gomez, K.A. (1984). Statistical Procedures for Agricultural Research, second ed. John Wiley & Sons, New York.
  • Leclercq, P.A., Nguyen, X.D and Nguyen, N.T. (1994). Constituents of the leaf oil of Vietnamese Clausena excavata Burm. f. J. Essent. Oil Res. 6: 99-100. doi: 10.1080/10412905.1994.9698337
  • Behera, S., Kar, S.K., Rout, K.K., Barik, D.P., Panda, P.C. and Naik, S.K. (2019). Assessment of genetic and biochemical fidelity of field-established Hedychium coronarium J. Koenig regenerated from axenic cotyledonary node on meta-topolin supplemented medium. Ind. Crop Prod. 134, 206-215. doi: 10.1016/j.indcrop.2019.03.051
  • Athipornchai, A., Kumpang, R. and Semsri, S. (2021). Potential biological activities of Clausena essential oils for the treatment of diabetes. J. Oleo Sci. 70(11): 1669-1676. doi: 10.5650/jos.ess19294
  • Arulmozhi, D.K., Kurian, R., Veeranjaneyulu, A. and Bodhankar, S.L. (2007). Antidiabetic and antihyperlipidemic effects of Myristica fragrans. in animal models. Pharma. Biol. 45(1): 64-68.
  • Zang, B.B. and Moller, D.E. (2000). New approaches in the treatment of type 2 diabetes. Curr. Opin. Chem. Biol. 4: 461-467. doi: 10.1016/S1367-5931(00)00103-4
  • Mishra, P., Sha, A. and Mohapatra, A.K. (2021). Evaluation of antidiabetic and antioxidant activities of Achyranthes aspera leaf extracts: An in vitro study. J. Pharma. Phytochem. 10(4): 103-110.
  • Damsud, T., Chanwun, T. and Kaewpi-boon, C. (2017). Antidiabetic agents with α-glucosidase inhibition and antioxidant capacity from the shoots of Clausena cambo-diana Guill. Int. J. Agric. Technol. 13(4): 449-456.
  • Quan, N.V., Anh, L.H., Lam, V.Q., Takami, A., Teschke, R., Khanh, T.D. and Xuan, T.D. (2022). Anti-diabetes, anti-gout, and anti-leukemia properties of essential oils from natural spices Clausena indica, Zanthoxylum rhetsa, and Michelia tonkinensis. Molecules. 27: 774. doi: 10.3390/molecules27030774
  • Pandey, S.K., Gogoi, R., Bhandari, S., Sarma, N., Begum, T., Munda, S. and Lal, M. (2022). A comparative study on chemical composition, pharmacological potential and toxicity of Pogostemon cablin Linn., (Patchouli) flower and leaf essential oil. J. Essent. Oil Bear. Plant. 25(1): 160-179. doi: 10.1080/0972060X.2021.2013325
  • Thant, T.M., Aminah, N.S., Kristanti, A.N., Ramadhan, R., Aung, H.T. and Yoshiaki, T. (2019). Cytotoxic carbazole alkaloid root Clausena excavata on Hela cell line. In Proceedings of the 1st International Conference on Chemical Science and Technology Innovation (ICOCSTI 2019). 141-144.
  • Sharma, M., Grewal, K., Jandrotia, R., Batish, D.R., Singh, H.P. and Kohli, R.K. (2022). Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 146: 1-36. doi: 10.1016/j.biopha.2021.112514
  • Machado, T.Q., da Fonseca, A.C., Duarte, A., Robbs, B.K. and de Sousa, D.P. (2022). A narrative review of the antitumor activity of monoterpenes from essential oils: an update. Bio Med Res. Int. 24: 6317201
  • Wang, Y., Zhong, J., Bai, J., Tong, R., An, F., Jiao, P., He, L., Zeng, D., Long, E., Yan, J. and Yu, J. (2018). The application of natural products in cancer therapy by targeting apoptosis pathways. Curr. Drug Metabol. 19(9): 739-749. doi: 10.2174/1389200219666180511154722
  • Sharifi-Rad, J., Ozleyen, A., Boyunegmez Tumer, T., Oluwaseun Adetunji, C., El Omari, N., Balahbib, A., Taheri, Y., Bouyahya, A., Martorell, M., Martins, N. C. and Cho, W. (2019). Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules. 9(11): 1-52. doi: 10.3390/biom9110679
  • Yang, Y., He, P.Y., Zhang, Y. and Li, N. (2020). Natural products targeting the mito-chondria in cancers. Molecules. 26(1): 92. doi: 10.3390/molecules26010092
  • Fitsiou, E. and Pappa, A. (2019). Anti-cancer activity of essential oils and other extracts from aromatic plants grown in Greece. Antioxidants. 8(8): 290. doi: 10.3390/antiox8080290
  • Seneme, E.F., dos Santos, D.C., Silva, E.M.R., Franco, Y.E.M. and Longato, G.B. (2021). Pharmacological and therapeutic potential of myristicin: A literature review. Molecules. 26: 5914. doi: 10.3390/molecules26195914
  • Menezes, I.O., Scherf, J.R., Martins, A.O.B.P.B., Ramos, A.G.B., Quintans, J.D.S.S., Coutinho, H.D.M., Ribeiro Filho, J. and Menezes, I.R.A.D. (2021). Biological properties of terpinolene evidenced by in silico, in vitro and in vivo tests: a systematic review. Phytomedicine. doi: https://doi.org/10.1016/j.phymed.2021.153768.
  • Kig, C., Mertoglu, E., Caliskan, A., Hincal Agus, H., Onay Ucar, E. and Guler, V. (2021). Selective and oxidative stress mediated cell death of MCF-7 cell line induced by terpinolene. Biologia. 76: 2757-2766. doi: 10.1007/s11756-021-00803-z
  • Albaayit, A.S.F., Khan, M.A., Abdullah, R. and Mohd Noor, M.H. (2021). Ethyl acetate extract of Clausena excavata induces growth inhibition of non-small-lung cancer, NCI-H460, cell line via apoptosis. J. Appl. Biomed. 90(1): 40-47. doi: 10.32725/jab.2021.007
  • Song, F., Liu, D., Huo, X. and Qiu, D. (2022). The anticancer activity of carbazole alkaloids. Archiv. der Pharma. 355(1): 2100277. doi: 10.1002/ardp.202100277
  • Brunner, A.L., Johnson, D.S., Kim, S.W., Valouev, A., Reddy, T.E., Neff, N.F., Anton, E., Medina, C., Nguyen, L. and Chiao, E. (2009). Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19: 1044. doi: 10.1101/gr.088773.108
  • Arbab, I.A., Abdul, A.B., Sukari, M.A., Abdullah, R., Syam, S., Kamalidehghan, B., Ibrahim, M.Y., Taha, M.M.E., Abdelwahab, S.I., Ali, H.M. and Mohan, S. (2013). Dentatin isolated from Clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involve-ment of NF-κB signalling and G0/G1 cell cycle arrest: a bioassay-guided approach. J. Ethnopharmacol. 145(1): 343-354. doi: 10.1016/j.jep.2012.11.020
  • Andas, A., Abdul, A.B., Rahman, H.S., Sukari, M.A., Abdelwahab, S.I., Samad, N.A., Anasamy, T. and Arbab, I.A. (2015). Dentatin from Clausena excavata induces apoptosis in HEPG2 cells via mitochondrial mediated signaling. Asian Pacific J. Cancer Prevent. 16(10): 4311-4316. doi: 10.7314/APJCP.2015.16.10.4311
  • Waziri, P.M., Abdullah, R., Yeap, S.K., Omar, A.R., Abdul, A.B., Kassim, N.K., Malami, I., Karunakaran, T. and Imam, M.U. (2016). Clausenidin from Clausena excavata induces apoptosis in hepG2 cells via the mitochondrial pathway. J. Ethno-pharmacol. 194: 549-558. doi: 10.1016/j.jep.2016.10.030
  • Zain, W.N., Rahmat, A., Othman, F. and Yap, T.Y.H. (2009). Antiproliferative pro-perties of Clausine-B against cancer cell lines. Malaysian J. Med. Sci. 16: 31-36.
  • Garzoli, S., Petralito, S., Ovidi, E., Turchetti, G., Masci, V.L., Tiezzi, A., Trilli, J., Cesa, S., Casadei, M.A., Giacomello, P. and Paolicelli, P. (2020). Lavandula x intermedia essential oil and hydrolate: evaluation of chemical composition and antibacterial activity before and after formu-lation in nanoemulsion. Ind. Crop. Prod. 145: 112068. doi: 10.1016/j.indcrop.2019.112068
  • Angane, M., Swift, S., Huang, K., Butts, C.A. and Quek, S.Y. (2022). Essential oil and their major components: an updated review on antimicrobial activities, mecha-nism of action and their potential application in the food industry. Foods. 11: 464. doi: 10.3390/foods11030464
  • Hyldgaard, M., Mygind, T. and Meyer, R.L. (2012). Essential oils in food preser-vation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 3(12): 1-24.
  • Ju, J., Xie, Y., Yu, H., Guo, Y., Cheng, Y., Qian, H. and Yao, W. (2022). Synergistic interactions of plant essential oils with antimicrobial agents: a new antimicrobial therapy. Critic. Rev. Food Sci. Nutrit. 62(7): 1740-1751. doi: 10.1080/10408398.2020.1846494
  • Jagadeesan, Y. and Elumalai, K. (2019). Antioxidant activity, mosquitocidal activity, antibacterial activity of solvent extract and synthesized nanoparticles of Clausena excavata (Burm.) F. (Rutacae) against selected mosquitoes and pathogenic bacteria. Int. J. Health Life Sci. 5: 19-39.
  • Thien, V., Nguyen, M.G.D., Quynh, T.N. and Le, V.S. (2020). Antibacterial activities of ethanolic extract of four species of Rutaceae family. Plant Sci. Today. 7(3): 463-468. doi: 10.14719/pst.2020.7.3.784
  • Rahman, A., Chakma, J.S., Bhuiyan, N.I. and Islam, S. (2012). Composition of the essential oil of Clausena suffruticosa Leaf and evaluation of its antimicrobial and cytotoxic activities. Trop. J. Pharma. Res. 11(5): 739-746.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.