74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Screening of larvicidal activities of eight plant essential oils against Thaumetopoea wilkinsoni Tams. (Lepidoptera: Thaumetopoeidae), a main pine defoliator in the Mediterranean

&
Pages 881-901 | Received 20 Mar 2023, Accepted 31 Aug 2023, Published online: 11 Oct 2023

References

  • Thompson, J.D. (2005). Plant Evolution in the Mediterranean. Oxford University Press, New York.
  • Richardson, D.M. (2000). Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge.
  • Tunalı, Z. (2016). Detection of fungal needle disease agents of Turkish pine (Pinus brutia Ten.) forests in Burdur Province using molecular techniques. MSc, Süleyman Demirel University, Isparta.
  • Işık, K., Topak, K. and Keskin, A.C. (1987). Genetic variation among and within six Pinus brutia Ten. stands in southern Turkey: Six-year results at five common-garden plantations. Forest Tree Seeds and Tree Breeding Research Directorate Publications. Ankara. (in Turkish).
  • Koski, V. and Antola, J. (1994). National tree breeding and seed production programme from Turkey 1994–2003. Turkish-Finnish Forestry Project. Vol. II Technical Instructions. Ankara.
  • Eren, G., Kandemir, I. and Kaya, Z. (2004). Genetic variation in Turkish red pine (Pinus brutia Ten.) seeds stands as determined by RAPD markers. Silvae Genet. 53(4): 169-175.
  • Gulcu, S., Akkaya, O. and Bilir, N. (2014). Genetic gain Anatolian black pine (Pinus nigra Arnold.) populations of lakes district. Kastamonu Univ. Orman Fak. Derg. 14(1): 93-100.
  • Schiller, G. (1994). Diversity among P. brutia subsp. brutia and related taxa-A review. J. Fac. For. Istanbul U. 44(1): 133-134.
  • Pausas, J.G., Bladé, C., Valdecantos, A., Seva, J.P., Fuentes, D., Alloza, J.A., Vilagrosa, A., Bautista, S., Cortina, J. and Vallejo, R. (2004). Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice-a review. Plant Ecol. 171: 209-220.
  • Caliskan, S. and Boydak, M. (2017). Afforestation of arid and sermiarid ecosystems in Turkey. Turk. J. Agric. For. 41: 317-330.
  • Işık, K. and Kara, N. (1997). Altitudinal variation in Pinus brutia Ten. and its implication in genetic conservation and seed transfers in southern Turkey. Silvae Genet. 46: 113-120.
  • Avcı, M. (2000). Investigations on structure of egg-batches, parasitism and egg laying abits of Thaumetopoea pityocampa (Den. & Schiff.) (Lep.: Thaumetopoeidae) in various regions of Turkey. J. Entomol. Res. Soc. 24: 167-178.
  • Kanat, M. and Alma, M.H. (2003). Insecticidal effects of essential oils from various plants againist larvae of the pine processionary moth (Thaumetopoea pityocampa Schiff) (Lepidoptera: Thaumetopoeidae). Pest Manag. Sci. 60: 173-177.
  • Houri, A. and Doughan, D. (2006). Behaviour patterns of the pine processionary moth (Thaumetopoea wilkinsoni Tams; Lepidoptera: Thaumetopoeidae). Am. J. Agric. Biol. Sci. 1(1): 01-05.
  • Erkaya, I. (2020). Predators and parasitoids of pine processionary moth (Thaumetopoea wilkinsoni Tams) in Western Mediterranean Region in Turkey. Bilgesci 4(1): 7-13.
  • Kanat, M., Alma, M.H. and Sivrikaya, F. (2005). Effect of defoliation by Thaumetopoea pityocampa (Den. & Schiff.) (Lepidoptera: Thaumetopoeidae) on annual diameter increment of Pinus brutia Ten. in Turkey. Ann. For. Sci. 61: 1-4.
  • Semiz, G. (2009). Investigation on genetic variation in resistance to pine processionary moth (Thaumetopoea wilkinsoni Tams.) of Turkish red pine (Pinus brutia Ten.) in terms of terpenes. PhD, Akdeniz University, Antalya.
  • Köse, H. (2007). The investigation of the effects of pine processionary on the diameter and lenght increment in red pine stands at different ages in various site class. MSc, Sütçü İmam University, Kahramanmaraş, Turkey (in Turkish).
  • Canakcioglu, H. and Mol, T. (1998). Forest Entomology. Istanbul University Forestry Faculty Publications. Istanbul.
  • Parlak, S., Özçankaya, I.M., Batur, M., Akkas, M.E., Boza, Z. and Toprak, O. (2018). Efficiency of funnel traps in controlling pine processionary moth. J. Plant. Dis. Prot. 125: 539-548.
  • Ansari, M., Moraiet, M. and Ahmad, S. (2014). Insecticides: Impact on the environment and human health in: Environmental Deterioration and Human Health. Malik A, Grohmann E, Akhtar R (eds). Dordrecht, the Netherlands: Springer, pp. 99-123.
  • Boettner, G.H., Elkinton, J.S. and Boettner, C.J. (2000). Effects of biological control introduction on three nontarget native species of saturniid moths. Conserv. Biol. 14(6): 1798-1806.
  • Sanda, N.B. and Sunusi, M. (2014). Fundamentals of biological control of pests. Int. J. Biol. Chem. Sci. 1(6): 1-12.
  • Veer, V. and Gopalakrishnan, R. (2016). Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization. Springer India, New Delhi.
  • Kortbeek, R.W.J., van der Gragt, M. and Bleeker, P.M. (2019). Endogenous plant metabolites against insects. Eur. J. Plant Pathol. 154: 67-90.
  • Cavalcanti, E.S.B., Maia de Morais, S., Lima, M.A.A. and Santana, E.W.P. (2004). Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem. Inst. Oswaldo Cruz. 99(5): 541-544.
  • Fahn, A. (2000). Structure and function of secretory cells. Adv. Bot. Res. 31: 37-75.
  • Badenes-Perez, F.R., Gershenzon, J. and Heckel, D.G. (2014). Insect attraction versus plant defense: young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PloS One. 9(4): e95766.
  • Pandiyan, G.N., Mathew, N. and Munusamy, S. (2019). Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. Ecotoxicol. Environ. Saf. 174: 549-556.
  • Kumar, N., Pathera, A.K., Saini, P. and Kumar, M. (2012). Harmful effects of pesticides on human health. Ann. Agri Bio Res. 17(2): 125-127.
  • Güncan, A. and Durmuşoğlu, E. (2004). Bitkisel kökenli doğal insektisitler üzerine bir değerlendirme. Hasad. 233: 26-32 (in Turkish).
  • Amer, A. and Mehlhorn, H. (2006). Larvicidal effects of various essential oils against Aedes, anopheles and Culex larvae (Diptera, Culicidae). Parasitol. Res. 99(4): 466-472.
  • Bhat, S.K. and Kempraj, V. (2009). Biocidal potential of clove oils against Aedes albopictus - A comparative study. Afr. J. Biotechnol. 8(24): 6933-6937.
  • Fayemiwo, K.A., Adeleke, M.A., Okoro, O.P., Awojide, S.H. and woniyi, I.O. (2014). Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac. J. Trop. Biomed. 4(1): 30-34.
  • Ouedrhiri, W., Balouiri, M., Harki, E.H., Moja, S. and Greche, H. (2017). Synergistic antimicrobial activity of two binary combinations of marjoram, lavender and wild thyme essential oils. Int. J. Food Prop. 20(12): 3149-3158.
  • Semiz, G., Semiz, A. and Mercan-Doğan, N. (2018). Essential oil composition, total phenolic content, antioxidant and antibiofilm activities of four Origanum species from southeastern Turkey. Int. J. Food Prop. 21(1): 194-204.
  • Lal, M., Begum, T., Gogoi, R., Sarma, N., Munda, S., Pandey, S. K., Baruah, J., Tamang, R. and Saikia, S. (2022). Anethole rich Clausena heptaphylla (Roxb.) Wight & Arn., essential oil pharmacology and genotoxic efficiencies. Sci. Rep. 12(1): 9978.
  • Gogoi, R., Sarma, N., Begum, T., Chanda, S.K., Lekhak, H., Sastry, G.N. and Lal, M. (2023). Agarwood (Aquilaria malaccensis L.) a quality fragrant and medicinally significant plant based essential oil with pharmacological potentials and genotoxicity. Ind. Crops Prod. 197: 116535.
  • Gogoi, R., Loying, R., Sarma, N., Munda, S., Pandey, S.K. and Lal, M. (2018). A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Ind. Crops Prod. 125: 131-139.
  • Semiz, G., Cetin, H., Isik, K. and Yanikoglu, A. (2006). Effectiveness of a naturally derived insecticide, spinosad, against the pine processionary moth Thaumetopoea wilkinsoni Tams. (Lepidoptera: Thaumetopoeidae) under laboratory conditions. Pest Manag. Sci. 62: 452-455.
  • Cetin, H., Erler, F. and Yanikoglu, A. (2007). A comparative evaluation of Origanum onites essential oil and its four major components as larvicides against the pine processionary moth, Thaumetopoea wilkinsoni Tams. Pest Manag. Sci. 63(8): 830-833.
  • Semiz, G., Kocabiyik, K. and Çetin, H. (2019). Larvicidal effect of Pinus brutia Ten. seed essential oil to pine processionary moth (Thaumetopoea wilkinsoni Tams.) under laboratory conditions. Fresenius Environ. Bull. 28: 2375-2379.
  • Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
  • Finney, D.J. (1971). Probit Analysis. Cambridge University Press. Cambridge.
  • Wheeler, M.W., Park, R.M. and Bailey, A.J. (2006). Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. 25(5): 1441-1444.
  • Robertson, J.L., Savin, N.E., Russell, R.M. and Preisler, H.K. (2007). Bioassays with Arthropods. CRC press, Taylor & Francis Group, Boca Raton, FL.
  • Hlina, B.L., Birceanu, O., Robinson, C.S., Dhiyebi, H. and Wilkie, M.P. (2021). The relationship between thermal physiology and lampricide sensitivity in larval sea lamprey (Petromyzon marinus). J. Great Lakes Res. 47: 272-284.
  • Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York, USA: Springer-Verlag. https://ggplot2.tidyverse.org.
  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • Pillmoor, J.B., Wright, K. and Terry, A.S. (1993). Natural products as a source of agrochemicals and leads for chemical synthesis. Pestic. Sci. 39(2): 131-140.
  • Adebayo, T.A., Gbolade, A.A. and Olaifa, J.I. (1999). Comparative study of toxicity of essential oils to larvae of three mosquito species. Nig. J. Nat. Prod. Med. 3: 74-76.
  • Larocque, N., Vincent, C., Belanger, A. and Bourassa, J.P. (1999). Effects of tansy essential oil from Tanacetum vulgare on biology of oblique-banded leafroller, Choristoneura rosaceana. J. Chem. Ecol. 25: 1319-1330.
  • Gbolade, A.A. (2001). Plant-derived insecticides in the control of malaria vector. J. Trop. Med. Plants 2 (1): 91-97.
  • Santos, G.K.N, Dutra, K.A., Barros, R.A., da Câmara, C.A.G., Lira, D.D. Gusmão, N.B. and Navarro, D.M.A.F. (2012). Essential oils from Alpinia purpurata (Zingiberaceae): Chemical composition, oviposition deterrence, larvicidal, and antibacterial activity. Ind. Crops Prod. 40: 254-260.
  • Phukerd, U. and Soonwera, M. (2014). Repellency of essential oils extracted from Thai native plants against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). Parasitol. Res. 113(9): 3333-3340.
  • Govindarajan, M., Kadaikunnan, S., Alharbi, N.S. and Benelli, G. (2016). Acute toxicity and repellent activity of the Origanum scabrum Boiss. and Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ. Sci. Pollut. Res. 23: 23228-23238.
  • Benelli, G., Rajeswary, M., Vijayan, P., Senthilmurugan, S. and Alharbi, N.S. (2017). Boswellia ovalifoliolata (Burseraceae) essential oil as an eco-friendly larvicide? Toxicity against six mosquito vectors of public health importance, non-target mosquito fishes, backswimmers, and water bugs. Environ. Sci. Pollut. Res. 25: 10264-11027.
  • Muturi, E.J., Ramirez, J.L., Doll, K.M. and Bowman, M.J. (2017). Combined toxicity of three essential oils against Aedes aegypti (Diptera: Culicidae) larvae. J. Med. Entomol. 54(6): 1684-1691.
  • Dias, C.N., Fernandes, D. and Moraes, C. (2014). Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitol. Res. 113: 565-592.
  • Dias, C.N., Alves, L.P., Rodrigues, K.A.F., Brito, M.C.A., Rosa, C.S., do Amaral, F.M., Monteiro, O.dosS., Andrade, E.H., Maia, J.G. and Moraes, D.F. (2015). Chemical composition and larvicidal activity of essential oils extracted from Brazilian Legal Amazon plants against Aedes aegypti L. (Diptera: Culicidae). J. Evid. Based Complementary Altern. Med. 2015:490765.
  • da Silva, A.G., Alves, R.C.C., Bezerra-Filho, C.M., Bezerra-Silva, P.C., dos Santos, L.M.M., Foglio, M.A., Navarro, D.M.A.F., da Silva, M.V. and Correia, M.T.S. (2015). Chemical composition and larvicidal activity of the essential oil from leaves of Eugenia brejoensis Mazine (Myrtaceae). J. Essent. Oil-Bear. Plants 18(6): 1441-1447.
  • Liu, X.C., Liu, Q.Y., Zhou, L. and Liu, Z.L. (2015). Larvicidal activity of essential oil derived from Illicium henryi Diels (Illiciaceae) leaf. Trop. J. Pharm. Res. 14(1): 111-116.
  • He, Q., Wang, W. and Zhu, L. (2018). Larvicidal activity of Zanthoxylum acanthopodium essential oil against the malaria mosquitoes, Anopheles anthropophagus and Anopheles sinensis. Malar. J. 17: 194.
  • Pavela, R., Maggi, F., Cianfaglione, K., Bruno, M. and Benelli, G. (2018). Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem. Biodivers. 15: e1700382.
  • Sheng, Z., Jian, R., Xie, F., Chen, B., Zhang, K., Li, D., Chen, W., Huang, C., Zhang, Y., Hu, L., Zhao, D., Zheng, X., Wu, P. and Hong, W.D. (2020). Screening of larvicidal activity of 53 essential oils and their synergistic effect for the improvement of deltamethrin efficacy against Aedes albopictus. Ind. Crops Prod. 145: 112131.
  • Hussain, A.J., Anwar, F., Chatha, S.A.S., Jabbar, A., Mahboob, S. and Nigam, P.S. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Braz. J. Microbiol. 41(4): 1070-1078.
  • Arnold, N., Valentini, G., Bellomaria, B. and Hocine, L. (1997). Comparative study of the essential oils from Rosmarinus eriocalyx Jordan & Fourr. from Algeria and R. officinalis L. from other countries. J. Essent. Oil Res. 9: 167-175.
  • Porte, A., Godoy, R.L.O., Lopes, D., Koketsu, M., Gonçalves, S.L. and Torquilho, H.S. (2000). Essential oil of Rosmarinus officinalis L. (rosemary) from Rio de Janeiro, Brazil. J. Essent. Oil Res. 12: 577-580.
  • Diab, Y., Auezova, L., Chebib, H., Chalchat, J.C. and Figueredo, G. (2002). Chemical composition of Lebanese rosemary (Rosmarinus officinalis L.) essential oil as a function of the geographical region and the harvest time. J. Essent. Oil Res. 14: 449-452.
  • Pintore, G., Usai, M., Bradesi, P., Juliano, C., Boatto, G., Tomi, F., Chessa, M., Cerri, R. and Casanova, J. (2002). Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr. J. 17: 15-19.
  • Papageorgiou, V., Gardeli, C., Mallouchos, A., Papaioannou, M. and Komaitis, M. (2008). Variation of the chemical profile and antioxidant behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller grown in Greece. J. Agric. Food Chem. 56: 7254-7264.
  • Jamshidi, R., Afzali, Z. and Afzali, D. (2009). Chemical composition of hydrodistillation essential oil of rosemary in different origins in Iran and comparison with other countries. Am.-Eurasian J. Agric. Environ. Sci. 5(1): 78-81.
  • Ait-Ouazzou, A., Lorán, S., Bakkali, M., Laglaoui, A., Rota, C. Herrera, A., Pagán, R. and Conchello, P. (2011). Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J. Sci. Food Agric. 91: 2643-2651.
  • Rašković, A., Milanović, I., Pavlović, N., Ćebović, T., Vukmirović, S. and Mikov, M. (2014). Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement Altern. Med. 14: 225.
  • Tawfeeq, A., Culham, A., Davis, F., Reeves, M. and Michael, N. (2016). The influence of genetic variation on essential oil composition in Rosmarinus officinalis L. the common rosemary. In: 9th Joint Natural Products Conference; Copenhagen, Denmark.
  • Bajalan, I., Rouzbahani, R., Pirbalouti, A.G. and Maggi, F. (2017). Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind. Crops Prod. 107: 305-311.
  • Borgesa, R.S., Ortiz, B.L.S., Pereira, A.C.M., Keita, H. and Carvalho, J.C.T. (2019). Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 229: 29-45.
  • Selmi, S., Rtibi, K., Grami, D., Sebai, H. and Marzouki, L. (2017). Rosemary (Rosmarinus officinalis) essential oil components exhibit anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects in experimental diabetes. Pathophysiology 24(4): 297-303.
  • Yıldırım, E.D. (2018). The effect of seasonal variation on Rosmarinus officinalis (L.) essential oil composition. International Journal of Agriculture and Wildlife Science 4(1): 33-38.
  • Melito, S., Petretto, G.L., Chahine, S., Pintore, G. and Chessa, M. (2019). Seasonal variation of essential oil in Rosmarinus officinalis leaves in Sardinia. Nat. Prod. Commun. 14(7): 1-7.
  • Sales, A.J. and Pashazadeh, M. (2020). Study of chemical composition and antimicrobial properties of rosemary (Rosmarinus officinalis) essential oil on Staphylococcus aureus and Escherichia coli in vitro. Int. J. Life Sci. Biotecnology. 3(1)62-69.
  • Serralutzu, F., Stangoni, A.P., Amadou, B., Tijan, D., Re, G.A., Marceddu, S., Dore, A. and Bullitta, S. (2020). Essential oil composition and yield of a Rosmarinus officinalis L. natural population with an extended flowering season in a coastal Mediterranean environment and perspectives for exploitations. Genet. Resour. Crop Evol. 67: 1777-1793.
  • Başer, K.H.C. (1994). Essential oils of Labiatae from Turkey: recent results. Lamiales Newsl. 3: 6-11.
  • Tümen, G., Başer, K.H.C., Kırımer, N. and Ermin, N. (1995). The essential oil of Sideritis amasiaca Bornm. J. Essent. Oil Res. 7(6): 699-700.
  • Semiz, G. and Ozel, M. (2017). Essential oil composition of endemic Sideritis leptoclada O. Schwarz & P.H. Davis (Lamiaceae) from Turkey by using two-dimensional gas chromotography-time-of-flight mass spectorometry (Gc x GC-TOF/MS). Int. J. Second. Metab. 4(2): 137-141.
  • Komaitis, M.E., Ifanti-Papatragianni, N. and Melissari-Panagiotou, E. (1992). Composition of the essential oil of marjoram (Origanum majorana L.). Food Chem. 45(2): 117-118.
  • Baser, K.H.C., Özek, T., Tümen, G. and Sezik, E. (1993a). Composition of the essential oils of Turkish Origanum species with commercial importance. J. Essent. Oil Res. 5: 619-623.
  • Baser, K.H.C., Kirimer, N. and Tümen, G. (1993b). Composition of the Essential Oil of Origanum majorana L. from Turkey. J. Essent. Oil Res. 5: 577-579.
  • Tabanca, N., Özek, T., Baser, K.H.C. and Tümen, G. (2004). Comparison of the essential oils of Origanum majorana L. and Origanum x majoricum Cambess. J. Essent. Oil Res. 16 (3): 248-252.
  • Schmidt, E., Bail, S., Buchbauer, G., Stoilova, I., Krastanov, A., Stoyanova, A. and Jirovetz, L. (2008). Chemical composition, olfactory evaluation and antioxidant effects of the essential oil of Origanum majorana L. from Albania. Nat. Prod. Commun. 3: 1051-1056.
  • Raina, A.P. and Negi, K.S. (2012). Essential oil composiyion of Origanum majorana and Origanum vulgare ssp. hirtum growing in India. Chem. Nat. Compd. 7: 1015-1017.
  • Dantas, A.D.S., Klein-Júnior, L.C., Machado, M.S., Guecheva, T.N., Santos, L.D.D., Zanette, R.A., de Mello, F.B., Henriques, J.A.P. and de Mello, J.R.B. (2016). Origanum majorana essential oil lacks mutagenic activity in the Salmonella/microsome and micronucleus assays. Sci. World J. 2016: 3694901.
  • Verma, R.S., Padalia, R.C., Chauhan, A., Verma, R.K., Rahman, L. and Singh, A. (2016). Changes in the essential oil composition of Origanum majorana L. during post harvest drying. J. Essent. Oil-Bear. Plants. 19 (6): 1547-1552.
  • Bagci, Y., Kan, Y., Dogu, S. and Celik, S.A. (2017). The essential oil compositions of Origanum majorana L. cultivated in Konya and collected from Mersin-Turkey. Indian J. Pharm. Educ. Res. 51(3): 463-469.
  • Aytaç, E. (2020). Comparison essential oil contents Origanum majorana L. obtained by hydrodistillation and SFE. Hacettepe J. Biol. Chem. 48(3): 239-244.
  • Baytop T (1984). Türkiye’de Bitkiler ile Tedavi (geçmişte ve bugün). Sanal Matbaacılık. İstanbul. (in Turkish).
  • Semiz, G., Işık, K. and Ünal, O. (2007). Enek pekmez production from Juniper fruits by native people on Taurus Mountains in southern Turkey. Econ. Bot. 61: 299-301.
  • El-Ghorab, A., Shaaban, H.A., El-Massry, K.F and Shibamoto, T. (2008). Chemical composition of volatile extract and biological activities of volatile and less-volatile extracts of juniper berry (Juniperus drupacea L.) fruit. J. Agric. Food Chem. 56(13): 5021-5025.
  • Miceli, N., Trovato, A., Marino, A., Bellinghieri, V., Melchini, A, Dugo, P., Cacciola, F., Donato, P., Mondello, L., Güvenç, A., De Pasquale, R. and Taviano, M.F. (2011). Phenolic composition and biological activities of Juniperus drupacea Labill. berries from Turkey. Food Chem. Toxicol. 49(10): 2600-2608.
  • Akkol, E.K., Güvenç, A. and Yesilada, E. (2009). A comparative study on the antinociceptive and anti-inflammatory activities of five Juniperus taxa. J. Ethnopharmacol. 125(2): 330-336.
  • Adams, R.P. (1997). Comparisons of the Leaf oils of Juniperus drupacea Labill. from Greece, Turkey and the Crimea. J. Essent. Oil Res. 9(5): 541-544.
  • Sezik, E., Kocakulak, E., Özek, T. and Başer, K.H.C. (2009). Essential oils composition of Juniperus drupacea Lab. leaf from Turkey. Acta Pharm. Sci. 51(2): 109-120.
  • Koutsaviti, A., Tzakou, O., Galati, E.M., Certo, G. and Germanò, M.P. (2017). Chemical composition of Juniperus phoenicea and J. drupacea essential oils and their biological effects in the choriallantoic membrane (CAM) assay. Nat. Prod. Commun. 12(3): 449-452.
  • Jalal, Z., Atki, Y.E., Lyoussi, B. and Abdellaoui, A. (2015). Phytochemistry of the essential oil of Melissa officinalis L. growing wild in Morocco: Preventive approach against nosocomial infections. Asian Pac. J. Trop. Biomed. 5(6): 458-461.
  • de Sousa, A.C., Alviano, D.S., Blank, A.F., Alves, P.B., Alviano, C.S. and Gattass, C.R. (2004). Melissa officinalis L. essential oil: Antitumoral and antioxidant activities. J. Pharm. Pharmacol. 56(5): 677-681.
  • Bağdat, R.B. and Coşge, B. (2006). The essential oil of lemon balm (Melissa officinalis L.), its components and using fields. Anajas 21(1): 116-121.
  • Schnitzler, P., Schuhmacher. A., Astani, A. and Reichling, J. (2008). Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine 15(9): 734-740.
  • Taherpour, A.A., Maroofi, H., Rafie, Z. and Larijani, K. (2012). Chemical composition analysis of the essential oil of Melissa officinalis L. from Kurdistan, Iran by HS/SPME method and calculation of the biophysicochemical coefficients of the components. Nat. Prod. Res. 26(2): 152-160.
  • Singh, S., Haider, S.Z., Chauhan, N.K., Lohani, H., Sah, S. and Yadav, R.K. (2014). Effect of time of harvesting on yield and quality of Melissa officinalis L. in Doon Valley, India. Indian J. Pharm. Sci. 76(5): 449-452.
  • Mitscher, L.A. (2007). Traditional medicines in: Comprehensive Medicinal Chemistry II. Taylor, J.B. and Triggle, D.J. (eds) Elsevier, Amsterdam.
  • Stojković, D., Soković, M., Glamočlija, J., Džamić, A., Ćirić, A. Ristić, M. and Grubišić, D. (2011). Chemical composition and antimicrobial activity of Vitex agnuscastus L. fruits and leaves essential oils. Food Chem. 128(4): 1017-1022.
  • Ekiert, H., Pajor, J., Klin, P., Rzepiela, A., Ślesak, H. and Szopa, A. (2020). Significance of Artemisia vulgaris L. (Common Mugwort) in the history of medicine and its possible contemporary applications substantiated by phytochemical and pharmacological studies. Molecules 25(19): 4415.
  • Bariyah, S.K., Ahmed, D. and Ikram, M. (2012). Ocimum basilicum: A review on phytochemical and pharmacological studies. Pak. J. Chem. 2(2):78-85.
  • Joshi, R.K. (2014). Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc. Sci. Life 33(3):151-156.
  • Avetisyan, A., Markosian, A., Petrosyan, M., Sahakyan, N., Babayan, A., Aloyan, S. and Trchounian, A. (2017). Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Med. Ther. 17: 60.
  • Hassanpouraghdam, B.M., Hassani, A. and Shalamzari, S.M. (2010). Menthone and estragole-rich essential oil of cultivated Ocimum basilicum L. from northwest Iran. Chemija 21(1): 59-62.
  • Rashid, A., Anwar, F., Qadir, R., Sattar, R., Akhtar, M.T. and Nisar, B. (2023). Characterization and biological activities of essential oil from flowers of sweet basil (Ocimum basilicum L.) selected from different regions of Pakistan. J. Essent. Oil-Bear. Plants (in press).
  • Benedec, D., Oniga, I., Oprean, R. and Tamas, M. (2009). Chemical composition of the essential oils of Ocimum basilicum L. cultivated in Romania. Farmacia 57(5): 625-629.
  • Özek, T., Beis, S.H., Demirçakmak, B. and Baser, K.H.C. (1995). Composition of the essential oil of Ocimum basilicum L. cultivated in Turkey. J. Essent. Oil Res. 7(2): 203-205.
  • Ozcan, M. and Chalchat, J.C. (2002). Essential oil composition of Ocimum basilicum L. and Ocimum minimum L. in Turkey. Czech J. Food Sci. 20(6): 223-228.
  • Ozcan, M. and Chalchat, J.C. (2004). Essential oil composition of a new chemotype of Basil (Ocimum basilicum L.) cultivating in Turkey. J. Essent. Oil-Bear. Plants 7(2): 155-159.
  • Toncer, O., Karaman, S., Diraz, E. and Tansi, S. (2017). Essential oil composition of Ocimum basilicum L. at different phenological stages in semi-arid environmental conditions. Fresenius Environ. Bull. 26(8): 5441-5446.
  • Cetin, H., Erler. F. and Yanikoglu, A. (2006). Toxicity of essential oils extracted from Origanum onites L. and Citrus aurentium L. against the pine processionary moth, Thaumetopoea wilkinsoni Tams. Folia Biol. 54(3-4): 153-157.
  • Varçin, M. and Kesdek, M. (2020). Chemical composition of Vitex agnuscastus L. (Verbenaceae) essential oil and its larvicidal effectiveness on Thaumetopoea pityocampa (Denis & Schiffermüller, 1775) (Lepidoptera: Notodontidae) larvae. Turk. Entomol. Derg. 44(4): 437-447.
  • Bozhüyük, A.U. (2020). Larvicidal toxicity of Vitex agnus-castus L. (Verbenaceae) extracts to Thaumetopoea pityocampa (Denis & Schiffermüller, 1775) (Lepidoptera: Thaumetopoeidae) larvae. Turk. J. Weed Sci. 23(2): 155-163.
  • Kesdek, M., Bayrak, N., Kordalı, Ş., Usanmaz, A., Contuk, G. and Ercişli, S. (2013). Larvicidal effects of some essential oils against larvae of the pine processionary moth (Thaumetopoea pityocampa (Denis & Schiffermüller)) (Lepidoptera: Thaumetopoeidae). Egypt. J. Biol. Pest Control 23(2): 201-207.
  • Kesdek, M., Kordalı, Ş., Çoban, K., Usanmaz A. and Ercişli S. (2014). Larvicidal effect of some plant extracts on the pine processionary moth, Thaumetopoea pityocampa (Denis & Schiffermuller) in laboratory conditions. Acta Sci. Pol. Hortorum Cultus. 13 (5): 145-162.
  • Pane, C. Rongai, D. and Zaccardelli, M. (2013). Foliar spray application of glucosinolates and essential oils on processing tomato in open field production system. Agric. Sci. 4(3): 149-153.
  • Bolouri, P., Salami, R., Kouhi, S., Kordi, M., Lajayer, B. A., Hadian, J. and Astatkie, T. (2022). Applications of essential oils and plant extracts in different industries. Molecules 27: 8999.
  • Mc Donnell, R., Yoo, J., Patel, K., Rios, L., Hollingsworth, R., Millar, J. and Paine, T. (2016). Can essential oils be used as novel drench treatments for the eggs and juveniles of the pest snail Cornu aspersum in potted plants? J. Pest. Sci. 89: 549-555.
  • Djiwanti, S.R., Supriardi, W. and Wiratno, W. (2019). Effectiveness of some clove and citronella oil based-pesticide formulas against root-knot nematode on ginger. IOP Conf. Ser.: Earth Environ. Sci. 250: 012090.
  • Klein, J.D., Firmansyah, A., Panga, N., Abu-Aklin, W., Dekalo-Keren, M., Gefen, T., Kohen, R., Shalev, Y.R., Dudai, N. and Mazor, L. (2017). Seed treatments with essential oils protect radish seedlings against drought. Agric. Food. 2(4): 345-353.
  • Moumni, M., Allagui, M.B., Mezrioui, K., Amara, H.B. and Romanazzi, G. (2021). Evualiation of seven essential oils as seed treatments against seedborne fungal pathogens of Cucurbita maxima. Molecules 26: 2354.
  • Parker, J.E., Snyder, W.E., Hamilton, G.C. and Rodrigues-Saona, C. (2013). Companion planting and insect pest control in: Weed and Pest Control - Conventional and New Challenges. InTech. doi:10.5772/55044.
  • Moravvej, G., Hassanzadeh-Khayyat, M. and Abbar, S. (2010). Vapor activity of essential oils extracted from fruit peels of two Citrus species against adults of Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Bruchidae). Turk. J. Entomol. 34(3): 279-288.
  • Işıkber, A.A., Tunaz, H., Er, M.K. and Sağlam, Ö. (2019). Fumigant toxicity of mustard essential oil and its main compound alone and combinations with modified atmosphere treatments against Tribolium confusum du Val., 1863 (Coleoptera: Tenebrionidae). Turk. J. Entomol. 43(2): 179-187.
  • El-Raheem, A., Sweelam, M.E., Taka, A., Safaa, M. and Mousa, M.M. (2022). Fumigation toxicity of some plant volatile oils against stored grain weevils. MJPPV 7: 97-106.
  • Babushok, V.I., Linstrom, P.J. and Zenkevich, I.G. (2011). Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 40: 43101.
  • Adams, R.P. (2007). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry 4th ed. Allured Publishing Corporation: Carol Stream, IL, USA.
  • National Institute of Science and Technology (2018). Chemistry Web Book Data. Data from NIST Standard Reference Database 69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.