29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploration of the antiproliferative and antioxidant effects and the molecular docking study EGFR and VEGFR2 of essential oil from Citrus aurantium Peels

, , , , , & show all
Pages 1130-1150 | Received 20 Feb 2023, Accepted 06 Nov 2023, Published online: 29 Nov 2023

References

  • Yuan, H., Ma, Q., Ye, L., Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules. 21(5): 559.
  • Sahin Yaglioglu, A., Eser, F., Yaglioglu, M.S., Demirtas, I. (2020). The anti-proliferative and antioxidant activities of the essential oils of Juniperus species from Turkey. Flavour Fragr. J. 35(5): 511-523.
  • Chemat, F., Vian, M.A., Ravi, H.K., Khadhraoui, B., Hilali, S., Perino, S., Tixier, A.S.F. (2019). Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules. 24(16): 3007.
  • Sitarek, P., Rijo, P., Garcia, C., Skała, E., Kalemba, D., Białas, A.J., Szemraj, J., Pytel, D., Toma, M., Wysokińska, H., Śliwiński, T. (2017). Antibacterial, anti-inflammatory, antioxidant, and anti-proliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxid. Med. Cell Longev. 2017.
  • Blowman, K., Magalhães, M., Lemos, MFL., Cabral, C., Pires, I.M. (2018). Anticancer Properties of Essential Oils and Other Natural Products. Evidence-based Complement. Altern. Med. 2018: 1-12.
  • Darwish, A.G., Hassan, H.M., Samy, M.N., Shaker, E.S., Basha, S.M. and Balasubramani, S.P. (2022). GC-MS analysis and in vitro evaluation of antioxidant and cytotoxic activities of Melaleuca viminalis (Myrtaceae). J. Plant Biochem. Biotechnol. 31(2): 453-458.
  • Suntar, I., Khan, H., Patel, S., Celano, R. and Rastrelli, L. (2018). An overview on Citrus aurantium L.: Its functions as food ingredient and therapeutic agent. Oxid. Med. Cell. Longev. 2018.
  • Dosoky, N.S. and Setzer, W.N. (2018). Biological activities and safety of citrus spp. Essential oils. Int. J. Mol. Sci. 19(7): 1966.
  • Boskovic, M., Baltic, M., Ivanovic, J., Djuric, J., Loncina, J., Dokmanovic, M. and Markovic, R. (2013). Use of essential oils in order to prevent foodborne illnesses caused by pathogens in meat. Tehnol. Mesa. 54(1): 14-20.
  • Olfa, T., Gargouri, M., Akrouti, A., Brits, M., Gargouri, M., Ben Ameur, R., Pieters, L., Foubert, K., Magné, C., Soussi, A. and Allouche, N. (2021). A comparative study of phytochemical investigation and antioxidative activities of six citrus peel species. Flavour. Fragr J. 36(5): 564-575.
  • Pereira, I., Severino, P., Santos, A.C., Silva, A.M. and Souto, E.B. (2018). Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surfaces B Biointerfaces. 171: 566-578.
  • Singh, P., Shukla, R., Prakash, B., Kumar, A., Singh, S., Mishra, P.K. and Dubey, N.K. (2010). Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem. Toxicol. 48(6): 1734-1740.
  • Valente, J., Zuzarte, M., Gonçalves, M.J., Lopes, M.C., Cavaleiro, C., Salgueiro, L. and Cruz, M.T. (2013). Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem. Toxicol. 62: 349-354.
  • Fiorini, D., Molle, A., Nabissi, M., Santini, G., Benelli, G. and Maggi, F. (2019). Valorizing industrial hemp (Cannabis sativa L.) by-products: Cannabidiol enrichment in the inflorescence essential oil optimizing sample pre-treatment prior to distillation. Ind. Crops Prod. 128: 581-589.
  • Hashemi, S.M.B., Kamani, M.H., Amani, H. and Mousavi Khaneghah, A. (2019). Voltage and NaCl concentration on extraction of essential oil from Vitex pseudonegundo using ohmic-hydrodistillation. Ind. Crops Prod. 141: 111734.
  • Kallel, I., Tarhouni, N., Elaguel, A., Mekrazi, S., Khabir, A., Hadrich, B., and Bayoudh, A. (2023). The phytochemical and pharmacological properties of Citrus sinensis ‘maltese half-blood’ essential oil peels extracted and optimized by response-surface methodology. Curr. Pharm. Biotechnol. 24.
  • Zarai, Z., Kadri, A., Ben Chobba, I., Ben Mansour, R., Bekir, A., Mejdoub, H. and Gharsallah, N. (2011). The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 10: 161.
  • Taktak, O., Ben Youssef, S., Abert Vian, M., Chemat, F. and Allouche, N. (2021). Physical and chemical influences of different extraction techniques for essential oil recovery from Citrus sinensis peels. J. Essent. Oil-Bearing Plants. 24(2): 290-303.
  • Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269(2): 337-341.
  • Osawa, T. and Namiki, M. (1981). A novel type of antioxidant isolated from leaf wax of Eucalyptus leaves. Agric. Biol. Chem. 45(3): 735-739.
  • Kallel, I., Hadrich, B., Gargouri, B., Chaabane, A., Lassoued, S., Gdoura, R., Bayoudh, A. and Ben Messaoud, E. (2019). Optimization of cinnamon (Cinnamomum zeylanicum Blume) essential oil extraction: evaluation of antioxidant and antiproliferative effects. Evidence-based Complement. Altern. Med. 2019.
  • Ruch, R.J., Cheng, S. jun, and Klaunig, J.E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from chinese green tea. Carcinogenesis. 10(6): 1003-1008.
  • Marcocci, L., Maguire, J.J., Droy-Lefaix, M.T. and Packer, L. (1994). The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun. 201(2): 748-755.
  • Noreen, H., Semmar, N., Farman, M. and McCullagh, J.S.O. (2017). Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 10(8): 792-801.
  • Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., Wang, J., Yu, B., Zhang, J. and Bryant, S.H. (2016). PubChem substance and compound databases. Nucleic Acids Res. 44(D1): D1202-D1213.
  • Shelley, J.C., Cholleti, A., Frye, L.L., Greenwood, J.R., Timlin, M.R. and Uchimaya, M. (2007). Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 21(12): 681-691.
  • Uysal, A., Ozer, O.Y., Zengin, G., Stefanucci, A., Mollica, A., Picot-Allain, C.M.N. and Mahomoodally, M.F. (2019). Multifunctional approaches to provide potential pharmacophores for the pharmacy shelf: Heracleum sphondylium L. subsp. ternatum (Velen.) Brummitt. Comput. Biol. Chem. 78: 64-73.
  • Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C. and Mainz, D.T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49(21): 6177-6196.
  • Jabri Karoui, I. and Marzouk, B. (2013). Characterization of bioactive compounds in Tunisian bitter orange (Citrus aurantium L.) peel and juice and determination of their antioxidant activities. Biomed. Res. Int. 2013: e345415.
  • Zarrad, K., Hamouda, A. Ben, Bouslama, T. and Laarif, A. (2017). Chemical composition and insecticidal effects of Citrus aurantium of essential oil and its powdery formulation against Tuta absoluta. Tunis. J. Plant Prot. 83: 2017.
  • Dhifi, W., Bellili, S., Jazi, S., Bahloul, N. and Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines. 3(4): 25.
  • González-Mas, M.C., Rambla, J.L., López-Gresa, M.P., Blázquez, M.A., Granell, A., Amparo Blázquez, M. and Granell, A. (2019). Volatile compounds in citrus essential oils: a comprehensive review. Front. Plant Sci. 10: 12.
  • Rathore, S., Mukhia, S., Kapoor, S., Bhatt, V., Kumar, R. and Kumar, R. (2022). Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Sci. Rep. 12(1): 1-13.
  • Taktak, O., Ben Ameur, R., Ben Youssef, S., Pieters, L., Foubert, K. and Allouche, N. (2021). Chemical composition and biological activities of essential oils and organic extracts from fresh and sun-dried citrus limon peels. Chem. Africa. 4(1): 51-62.
  • Agarwal, P., Sebghatollahi, Z., Kamal, M., Dhyani, A., Shrivastava, A., Singh, K.K., Sinha, M., Mahato, N., Mishra, A.K. and Baek, K.H. (2022). Citrus essential oils in aromatherapy: therapeutic effects and mechanisms. Antioxidants. 11(12): 2374.
  • Sharma, K., Guleria, S., Razdan, V.K. and Babu, V. (2020). Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 154: 112569.
  • Choi, H.S. (2006). Lipolytic effects of citrus peel oils and their components. J. Agric. Food Chem. 54(9): 3254-3258.
  • Nguyen, M.M. and Karboune, S. (2023). Combinatorial interactions of essential oils enriched with individual polyphenols, polyphenol mixes, and plant extracts: multi-antioxidant systems. Antioxidants. 12(2).
  • Li, Y., Liu, S., Zhao, C., Zhang, Z., Nie, D., Tang, W. and Li, Y. (2022). The chemical composition and antibacterial and antioxidant activities of five citrus essential oils. Molecules. 27(20): 7044.
  • Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. Bin, Nainu, F. and Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X. 13(January): 100217.
  • Raspo, M.A., Vignola, M.B., Andreatta, A.E. and Juliani, H.R. (2020). Antioxidant and antimicrobial activities of citrus essential oils from Argentina and the United States. Food Biosci. 36(October 2019): 100651.
  • Bayala, B., Bassole, I.H.N., Gnoula, C., Nebie, R., Yonli, A., Morel, L., Figueredo, G., Nikiema, J.B., Lobaccaro, J.M.A. and Simpore, J. (2014). Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS One. 9(3).
  • Yang, C., Chen, H., Chen, H., Zhong, B., Luo, X. and Chun, J. (2017). Antioxidant and anticancer activities of essential oil from gannan navel orange peel. Molecules. 22(8): 1-10.
  • Saengha, W., Karirat, T., Buranrat, B., Katisart, T., Ma, N.L. and Luang-In, V. (2022). Cytotoxicity and antiproliferative activity of essential oils from lemon, wild orange and petitgrain against MCF-7, HepG2 and HeLa cancer cells. Not. Bot. Horti. Agrobot. Cluj-Napoca. 50(3): 12713-12713.
  • Odeh, F., Rahmo, A., Alnori, A.S. and Chaty, M. (2012). The cytotoxic effect of essential oils Citrus aurantium peels on human colorectal carcinoma cell line (lim1863). J. Microbiol. Biotechnol. Food Sci. 9(1): 1476-1487.
  • Monajemi, R., Oryan, S., Haeri-Roohani, A., Ghannadi, A. and Jafarian, A. (2005). Cytotoxic effects of essential oils of some Iranian citrus peels. Iran J. Pharm. Res. 4(3): 183-187.
  • Mohammad-Bagher, M. (2011). Chemical composition, cytotoxicity and antioxidant activities of the essential oil from the leaves of Citrus aurantium L. African J. Biotechnol. 11(2): 498-503.
  • Méndez, G.L., Castro, N.P., Castro, E.P., Alarcón, M.T. and Barros, A.H. (2019). Essential oils as a source of bioactive molecules. Rev. Colomb. Ciencias. Quim. 48(1): 80-93.
  • Evstigneev, M.P. (2013). Physicochemical mechanisms of synergistic biological action of combinations of aromatic heterocyclic compounds. Org. Chem. Int. 2013: 1-10.
  • Hernández-Ochoa, L., Aguirre-Prieto, Y.B., Nevárez-Moorillón, G. V., Gutierrez-Mendez, N. and Salas-Muñoz, E. (2014). Use of essential oils and extracts from spices in meat protection. J. Food Sci. Technol. 51(5): 957-963.
  • Liu, Z.H., Wang, D.M., Fan, S.F., Li, D.W. and Luo, Z.W. (2016). Synergistic effects and related bioactive mechanism of Potentilla fruticosa L. leaves combined with Ginkgo biloba extracts studied with microbial test system (MTS). BMC Complement. Altern. Med. 16(1).
  • Taghvaeefard, N., Ghani, A. and Hosseinifarahi, M. (2021). Comparative study of phytochemical profile and antioxidant activity of flavedo from two Iranian citron fruit (Citrus medica L.). J. Food Meas. Charact. 15(3): 2821-2830.
  • Xanthis, V., Fitsiou, E., Voulgaridou, G.P., Bogadakis, A., Chlichlia, K., Galanis, A. and Pappa, A. (2021). Antioxidant and cytoprotective potential of the essential oil Pistacia lentiscus var. Chia and its major components myrcene and α-pinene. Antioxidants. 10(1): 1-19.
  • Mancianti, F., and Ebani, V.V. (2020). Biological activity of essential oils. Molecules. 25(3): 678.
  • Cosme, P., Rodríguez, A.B., Espino, J. and Garrido, M. (2020). Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants. 9(12): 1-20.
  • Yu, X., Lin, H., Wang, Y., Lv, W., Zhang, S., Qian, Y., Deng, X., Feng, N., Yu, H. and Qian, B. (2018). D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. Onco. Targets Ther. 11: 1833-1847.
  • Zhou, J., Azrad, M. and Kong, L. (2021). Effect of limonene on cancer development in rodent models: a systematic review. Front. Sustain. Food Syst. 5: 407.
  • Lichota, A. and Gwozdzinski, K. (2018). Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 19(11).
  • Huang, M., Lu, J.J. and Ding, J. (2021). Natural products in cancer therapy: past, present and future. Nat. Products Bioprospect. 11(1): 5-13.
  • Le, X., Nilsson, M., Goldman, J., Reck, M., Nakagawa, K., Kato, T., Ares, L.P., Frimodt-Moller, B., Wolff, K., Visseren-Grul, C., Heymach, J.V. and Garon, E.B. (2021). Dual EGFR-VEGF pathway inhibition: A promising strategy for patients with EGFR-Mutant NSCLC. J. Thorac. Oncol. 16(2): 205-215.
  • Tchekmedyian, V. and Sherman, E.J. (2018). Targeting VEGF and EGFR: a combination worth re-exploring? Lancet Oncol. 19(8): 1007-1009.
  • Shen, T. and Guo, Q. (2020). EGFR signaling pathway occupies an important position in cancer-related downstream signaling pathways of Pyk2. Cell Biol. Int. 44(1): 2-13.
  • Apte, R.S., Chen, D.S. and Ferrara, N. (2019). VEGF in signaling and disease: Beyond discovery and development. Cell. 176(6): 1248-1264.
  • Yang, Y.A., Tang, W.J., Zhang, X., Yuan, J.W., Liu, X.H. and Zhu, H.L. (2014). Synthesis, molecular docking and biological evaluation of Glycyrrhizin analogs as anticancer agents targeting EGFR. Molecules. 19(5): 6368-6381.
  • Ung, P.M.U. and Schlessinger, A. (2015). DFGmodel: Predicting protein kinase structures in inactive states for structure-based discovery of type-II inhibitors. ACS Chem. Biol. 10(1): 269-278.
  • Peng, Y.H., Shiao, H.Y., Tu, C.H., Liu, P.M., Hsu, J.T.A., Amancha, P.K., Wu, J.S., Coumar, M.S., Chen, C.H., Wang, S.Y., Lin, W.H., Sun, H.Y., Chao, Y.S., Lyu, P.C., Hsieh, H.P. and Wu, S.Y. (2013). Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: The role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J. Med. Chem. 56(10): 3889-3903.
  • Modi, S.J. and Kulkarni, V.M. (2019). Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: medicinal chemistry perspective. Med. Drug Discov. 2: 100009.
  • Sanphanya, K., Wattanapitayakul, S.K., Phowichit, S., Fokin, V. V. and Vajragupta, O. (2013). Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach. Bioorganic Med. Chem. Lett. 23(10): 2962-2967.
  • Caesar, L.K. and Cech, N.B. (2019). Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 36(6): 869-888.
  • Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. and Mai, A. (2014). 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: anticancer activities in cancer cells. J. Med. Chem. 57(14): 6259-6265.
  • Makar, S., Saha, T. and Singh, S.K. (2019). Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur. J. Med. Chem. 161: 252-276.
  • Sheikh, B.Y., Sarker, M.M.R., Kamarudin, M.N.A. and Mohan, G. (2017). Antiproliferative and apoptosis inducing effects of citral via p53 and ROS-induced mitochondrial-mediated apoptosis in human colorectal HCT116 and HT29 cell lines. Biomed. Pharmacother. 96(October): 834-846.
  • Nandi, S., Dey, R., Samadder, A., Saxena, A. and Saxena, A.K. (2022). Natural sourced inhibitors of EGFR, PDGFR, FGFR and VEGFR mediated signaling pathways as potential anticancer agents. Curr. Med. Chem. 29(2): 212-234.
  • Gautam, N., Mantha, A.K. and Mittal, S. (2014). Essential oils and their constituents as anticancer agents: a mechanistic view. Biomed. Res. Int. 2014: 1-23.
  • Mustapa, M.A., Guswenrivo, I., Zuhrotun, A., Ikram, N.K.K. and Muchtaridi, M. (2022). Anti-breast cancer activity of essential oil: a systematic review. Appl. Sci. 12(24).
  • Rayan, A., Raiyn, J. and Falah, M. (2017). Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One. 12(11): 1-12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.