45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical composition, antimicrobial, antioxidant and anti-cancer activities of Nepeta deflersiana Schweinf. Ex Hedge and Marrubium vulgare L. essential oils: a comparative study

, , , & ORCID Icon
Pages 1101-1122 | Received 05 Feb 2023, Accepted 06 Nov 2023, Published online: 16 Nov 2023

References

  • Al-Ghamdi, A.Y., Fadlelmula, A.A., Abdalla, M.O.M., Zabin, S.A. (2021). Phytochemical screening, chemical composition, antimicrobial activity and in silico investigation of the essential oil of Coleus forskohlii L. collected from the southwestern region of Saudi Arabia. J. Essent. Oil-Bear. Plants. 24(1): 120-133. doi: 10.1080/0972060X.2021.1901613
  • Servi, H., Demir, U., Servi, E.Y., Gundogdu, B., Barak, T.H. (2023). Antiproliferative and antibacterial activities of four commercial essential oil samples from Boswellia carteri, B. serrata, and two chemotypes of Canarium luzonicum, J. Essent. Oil-Bear. Plants. 26(1): 79-94. doi: 10.1080/0972060X.2023.2165167
  • Harouak, H., Najem, M., Ibijbijen, J., Nassiri, L. (2022). Dental use of some lamiaceae species from Morocco and principal component analysis between total polyphenolic content obtained by different aqueous extraction. J. Micrbiol. Biotech. Food Sci. 12(1): e5885. doi: 10.55251/jmbfs.5885
  • Napoli, E., Siracusa, L., Ruberto, G. (2020). New tricks for old guys: Recent developments in the chemistry, biochemistry, applications and exploitation of selected species from the Lamiaceae family. Chem. Biodiverse. 17(3): p e1900677. doi: 10.1002/cbdv.201900677
  • Ramos da Silva, L.R., Ferreira, O.O., Cruz, J.N., de Jesus Pereira Franco, C., Oliveira dos Anjos, T., Cascaes, M.M., da Costa, W.A., Andrade, E.H., Santana de Oliveira, M. (2021). Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities. Evid. Based Complement. Altern. Med. 2021. doi: 10.1155/2021/6748052
  • Al-Zaban, M., Naghmouchi, S., AlHarbi, N.K. (2021). HPLC-analysis, biological activities and characterization of action mode of Saudi Marrubium vulgare against foodborne diseases bacteria. Molecules. 26(17): 5112. doi: 10.3390/molecules26175112
  • Ahmad, I., Irfan, S., Dera, A.A., Zaman, G.S., Chandramoorthy, H.C., Mir, M.A., Rajagopalan, P. (2020). GC-MS analysis of ethanol extract from areal parts of Nepeta deflersiana and its anticancer and antimicrobial efficacies. Biologia 75: 1739-1750. doi: 10.2478/s11756-020-00473-3
  • Ahmad, I., Irfan, S., Abohashrh, M., Wahab, S., Abullais, S.S., Javali, M.A., Nisar, N., Alam, M.M., Srivastava, S., Saleem, M., Zaman, G.S., Ahmad, I., Mansuri, N. (2021). Inhibitory effect of Nepeta deflersiana on climax bacterial community isolated from the oral plaque of patients with periodontal disease. Molecules. 26: 202. doi: 10.3390/molecules26010202
  • Guedri Mkaddem, M., Zrig, A., Ben Abdallah, M., Romdhane, M., Okla, M.K., Al-Hashimi, A., Alwase, Y.A., Hegab, M.Y., Madany, M.M., Hassan, A.H. and Beemster, G.T. (2022). Variation of the chemical composition of essential oils and total phenols content in natural populations of Marrubium vulgare L. Plants. 11(5): 612. doi: 10.3390/plants11050612
  • Akbulut, T.D., Kose, F.A., Demirci, B., Baykan, S. (2023). Chemical profile and cytotoxicity evaluation of aerial parts of Marrubium vulgare L. from different locations in Turke. Chem. Biochem. 20(4): e202201188.
  • Ouriagli, T., Amnay A., Raoui, S.M., Errachidi, F., Chahdi, F.O., Chabir, R. (2023). Alkaloids from Marrubium vulgare L.: Antioxidant and anti-inflammatory activities as a function of extraction methods. Trop. J. Nat. Prod. Res. 7(7): 3411-3420.
  • Salama, M.M., Taher, E.E. and El-Bahy, M.M. (2012). Molluscicidal and mosquitocidal activities of the essential oils of Thymus capitatus Hoff. et Link. and Marrubium vulgare L. Rev. Inst. Med. Trop. Sao Paulo. 54: 281-286. doi: 10.1590/S0036-46652012000500008
  • Abidi, A, Dhaouafi, J, Brinsi, C, Tounsi, H, Sebai, H. (2022). Tunisian Horehound (Marrubium vulgare) aqueous extract improves treatment of bleomycin-induced lung fibrosis in rat. Dose Response. 20(3): 15593258221119300.
  • Hassan, M., Shoeib, N., Temraz, A. and Kadry, A.K. (2016). Antiviral, antibacterial activities and chemical composition of the essential oil of Nepeta deflersiana schweinf growing in KSA. Int. Res. J. Pharm. 7(6): 29-33. doi: 10.7897/2230-8407.07658
  • Al-Taweel, A.M., Raish, M., Perveen, S., Fawzy, G.A., Ahmad, A., Ansari, M.A., Mudassar, S., Ganaie, M.A. (2017). Nepeta deflersiana attenuates isoproterenol-induced myocardial injuries in rats: Possible involvement of oxidative stress, apoptosis, inflammation through nuclear factor (NF)-κB downregulation. Phytomedicine. 34: 67-75. doi: 10.1016/j.phymed.2017.08.003
  • Aćimović, M., Jeremić, K., Salaj, N., Gavarić, N., Kiprovski, B., Sikora, V. and Zeremski, T. (2020). Marrubium vulgare L.: A phytochemical and pharmacological overview. Molecules. 25(12): 2898. doi: 10.3390/molecules25122898
  • Rached, S., Imatara, H., Habsaoui, A., Mzioud, K., Haida, S., Saleh, A., Al Kamaty, O., Alahdab, A., Parvez, M.K., Orras, S., El Fartah, S. (2022). Characterization, chemical compounds and biological activities of Marrubium vulgare L. essential oil. Processes. 10(10): 2110. doi: 10.3390/pr10102110
  • Mssillou, I., Agour, A., Hamamouch, N., Lyoussi, B. and Derwich, E. (2021). Chemical composition and in vitro antioxidant and antimicrobial activities of Marrubium vulgare L. Sci. World J. 2021. doi: 10.1155/2021/7011493
  • IPNI (International Plant Names Index) (2023). Facilitated by The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens. Available online: http://www.ipni.org/ (accessed on 15 March 2023).
  • WFO (World Flora Online) (2023). Facilitated by Royal Botanic Gardens, Kew and Missouri Botanical Garden. Available online: http://www.worldfloraonline.org/ (accessed on 15 March 2023).
  • Al-Robai, S.A., Ahmed, A.A.E., Mohamed, H.A., Ahmed, A.A., Zabin, S.A., Alghamdi, A.A.A. (2022). Qualitative and quantitative ethnobotanical survey in Al Baha province, southwestern Saudi Arabia. Diversity. 14: 867. doi: 10.3390/d14100867
  • Belkassam, A., Smaili, T., Boukeloua, A., Rebbas, K., Flamini, G., Ascrizzi R., Ertaş A., Boğa, M. (2020). Antioxidant, anticholinesterase, and antibacterial activities of essential oils and methanol extract of Carduncellus pinnatus (Desf.) DC. growing in Algeria. Ann. Food Sci. Technol. 21(3): 568-578
  • Hadjadj, N. and Hazzit M. (2020). Analysis and antioxidant activity of essential oils and methanol extracts of Origanum floribundum Munby. J. Essent. Oil-Bear Plants. 23(1): 85-96. doi: 10.1080/0972060X.2020.1729867
  • Al-Robai, S.A., Zabin, S.A., Ahmad, A.A., Mohamed, H.A.A., Alghamdi, A.A.A., Ahmed, A.A.E. (2022). Phenolic contents, anticancer, antioxidant, and antimicrobial capacities of MeOH extract from the aerial parts of Trema orientalis plant. Open Chem. 20(1): 666-678. doi: 10.1515/chem-2022-0183
  • Nazreen, S. (2021). Design, synthesis, and molecular docking studies of thiazolidinediones as PPAR-γ agonists and thymidylate synthase inhibitors. Archiv. der. Pharmazie. 354(9): 2100021. doi: 10.1002/ardp.202100021
  • Althobiti, H.A. and Zabin, S.A. (2020). New Schiff bases of 2-(quinolin-8-yloxy) acetohydrazide and their Cu (II), and Zn (II) metal complexes: their in vitro antimicrobial potentials and in silico physicochemical and pharmacokinetics properties. Open Chem. 18(1): 591-607. doi: 10.1515/chem-2020-0085
  • Mothana, R.A. (2012). Chemical composition, antimicrobial and antioxidant activities of the essential oil of Nepeta deflersiana growing in Yemen. Rec. Nat. Prod. 6(2): 189-193.
  • Yabrir, B. (2019). Essential oil of Marrubium vulgare: Chemical composition and biological activities. A review. Nat. Prod. Sci. 25(2): 81-91. doi: 10.20307/nps.2019.25.2.81
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy (4th edition). Allured publishing corporation.
  • Amirmohammadi, F.Z., Azizi, M., Nemati, S.H., Iriti, M. and Vitalini, S. (2020). Analysis of the essential oil composition of three cultivated Nepeta species from Iran. Z. Naturforsch. C. 75(7-8): 247-254. doi: 10.1515/znc-2019-0206
  • Morteza-Semnani, K., Saeedi, M. and Babanezhad, E. (2008). The essential oil composition of Marrubium vulgare L. from Iran. J. Essent. Oil Research. 20: 488-490. doi: 10.1080/10412905.2008.9700065
  • Khanavi, M., Ghasemian, L., Motlagh, E.H., Hadjiakhoondi, A. and Shafiee, A. (2005). Chemical composition of the essential oils of Marrubium parviflorum Fisch. & C. A. Mey. and Marrubium vulgare L. from Iran. Flav. Fragr. J. 20: 324-326. doi: 10.1002/ffj.1425
  • Khaje, H., Bazi, S., Amini-Borojeni, N., Niazi, A. A., Bokaeian, M., Saboori, E., Saeidi, S. (2014). Phytochemical analysis, antibacterial activity of Marrubium vulgare L against Staphylococcus aureus in vitro. Zahedan J. Res. Med. Sci. 16(10): 60-64.
  • Zawiślak, G. (2015). Comparison of chemical composition of the essential oil from Marrubium vulgare L. and M. incanum Desr. during the second year of cultivation. Acta Agrobot. 68(1): 59-62. doi: 10.5586/aa.2015.002
  • Aćimović, M., Ivanović, S., Simić, K., Pezo, L., Zeremski, T., Ovuka, J., Sikora, V. (2021). Chemical characterization of Marrubium vulgare volatiles from Serbia. Plants. 10(3): 600. doi: 10.3390/plants10030600
  • Nagy, M. and Svajdlenka, E. (1998). Comparison of essential oils from Marrubium vulgare L. and M. peregrinum L. J. Essent. Oil Res. 10(5): 585-587. doi: 10.1080/10412905.1998.9700978
  • Elbali, W., Djouahri, A., Djerrad, Z., Saka, B., Aberrane, S., Sabaou, N. and Boudarene, L. (2018). Chemical variability and biological activities of Marrubium vulgare L. essential oil, depending on geographic variation and environmental factors. J. Essent. Oil Res. 30(6): 470-487. doi: 10.1080/10412905.2018.1493405
  • Kadri, A., Zarai, Z., Békir, A., Gharsallah, N., Damak, M. and Gdoura, R. (2011). Chemical composition and antioxidant activity of Marrubium vulgare L. essential oil from Tunisia. Afr. J. Biotechnol. 10(19): 3908-3914.
  • Hamdaoui, B., Wannes, W.A., Marrakchi, M., Brahim, N. B. and Marzouk, B. (2013). Essential oil composition of two Tunisian horehound species: Marrubium vulgare L. and Marrubium aschersonii Magnus. J. Essent. Oil-Bear. Plants. 16(5): 608-612. doi: 10.1080/0972060X.2013.854492
  • Bayir, B., Gündüz, H., Usta, T., Şahin, E., Özdemir, Z., Kayır, Ö., Sen, O., Aksit, H., Elmastas, M. Erenler, R. (2014). Chemical composition of essential oil from Marrubium vulgare L. leaves. J. New Results Sci. 3(6): 44-50.
  • Jianu, C., Moleriu, R., Stoin, D., Cocan, I., Bujancă, G., Pop, G., Lukinich-Gruia, A.T., Muntean, D., Rusu, L.-C and Horhat, D.I. (2021). Antioxidant and antibacterial activity of Nepeta x faassenii bergmans ex stearn essential oil. Appl. Sci. 11(1): 442. doi: 10.3390/app11010442
  • Rota, M.C., Herrera, A., Martínez, R.M., Sotomayor, J.A. Jordán, M.J. (2008). Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food control. 19(7): 681-687. doi: 10.1016/j.foodcont.2007.07.007
  • El Mannoubi, I. (2021). Effect of extraction solvent on phenolic composition, antioxidant and antibacterial activities of skin and pulp of Tunisian red and yellow-orange Opuntia Ficus-Indica fruits. J. Food Meas. Charact. 15(1): 643-651. doi: 10.1007/s11694-020-00673-0
  • Badawy, M.E., Marei, G.I.K., Rabea, E.I. and Taktak, N.E. (2019). Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pestic. Biochem. Physiol. 158: 185-200. doi: 10.1016/j.pestbp.2019.05.008
  • Badalamenti, N., Bruno, M., Formisano, C., Rigano, D. (2022). Effect of germacrene-rich essential oil of Parentucellia Latifolia (L.) caruel collected in central Sicily on the growth of microorganisms inhabiting historical textiles. Nat. Prod. Commun. 17(4): 1934578X221096963.
  • Abdoul-Latif, F.M., Ainane, A., Aboubaker, I.H., Mohamed J., Ainane, T. (2023).Exploring the potent anticancer activity of essential oils and their bioactive compounds: mechanisms and prospects for future cancer therapy. Pharmaceuticals. 16(8): 1086. doi: 10.3390/ph16081086
  • Jaradat, N., Al-Maharik, N., Abdallah, S., Shawahna, R., Mousa, A. and Qtishat, A. (2020). Nepeta curviflora essential oil: Phytochemical composition, antioxidant, anti-proliferative and anti-migratory efficacy against cervical cancer cells, and α-glucosidase, α-amylase and porcine pancreatic lipase inhibitory activities. Ind. Crops Prod. 158: 112946. doi: 10.1016/j.indcrop.2020.112946
  • Köngül Şafak, E., Şeker Karatoprak, G., Dirmenci, T., Duman, H., Küçükboyacı, N. (2022). Cytotoxic effects of some Nepeta species against breast cancer cell lines and their associated phytochemical properties. Plants. 11(11): 1427. doi: 10.3390/plants11111427
  • Tsuruoka, T., Bekh-Ochir, D., Kato, F., Sanduin, S., Shataryn, A., Ayurzana, A., Satou, T., Li, W. and Koike, K. (2012). The essential oil of Mongolian Nepeta sibirica: a single component and its biological activities. J. Essent. Oil Res. 24: 555-559. doi: 10.1080/10412905.2012.729925
  • Ovidi, E.; Masci, V.L.; Taddei, A.R., et al. (2020). Chemical investigation and screening of anti-proliferative activity on human cell lines of pure and nano-formulated lavandin essential oil. Pharmaceuticals. 13: 352. doi: 10.3390/ph13110352
  • Chang, M.Y. and Shen, Y.L. (2014). Linalool exhibits cytotoxic effects by activating antitumor immunity. Molecules. 19(5): 6694-6706. doi: 10.3390/molecules19056694
  • Dall’Acqua, S., Linardi, M.A., Maggi, F., Nicoletti, M., Petitto, V., Innocenti, G., Basso, G. and Viola, G. (2011). Natural daucane sesquiterpenes with antiproliferative and proapoptotic activity against human tumor cells. Bioorg. Med. Chem. 19(19): 5876-5885. doi: 10.1016/j.bmc.2011.08.021
  • Sampaio, L.A., Pina, L.T.S., Serafini, M.R., Tavares, D.D.S. and Guimaraes, A. G. (2021). Antitumor effects of carvacrol and thymol: A systematic review. Front. Pharmacol. 12: 702487. doi: 10.3389/fphar.2021.702487
  • Alam, M.M., Malebari, A.M., Syed, N., Neamatallah, T., Almalki, A.S., Elhenawy, A.A., Obaid, R.J., Alsharif, M.A. (2021). Design, synthesis and molecular docking studies of thymol based 1, 2, 3-triazole hybrids as thymidylate synthase inhibitors and apoptosis inducers against breast cancer cells. Bioorg. Med. Chem. 38: 116136. doi: 10.1016/j.bmc.2021.116136
  • Delgado, C., Mendez-Callejas, G. and Celis, C. (2021). Caryophyllene oxide, the active compound isolated from leaves of Hymenaea courbaril L. (Fabaceae) with antiproliferative and apoptotic effects on PC-3 androgen-independent prostate cancer cell line. Molecules. 26(20): 6142. doi: 10.3390/molecules26206142
  • Afoulous, S., Ferhout, H., Raoelison, E.G., Valentin, A., Moukarzel, B., Couderc, F. and Bouajila, J. (2013). Chemical composition and anticancer, anti-inflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chem. Toxicol. 56: 352-362. doi: 10.1016/j.fct.2013.02.008
  • Yeo, S.K., Ali, A.Y., Hayward, O.A., Turnham, D., Jackson, T., Bowen, I.D. and Clarkson, R. (2016). β-Bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines. Phytother. Res. 30(3): 418-425. doi: 10.1002/ptr.5543
  • Moayedi, Y., Greenberg, S.A., Jenkins, B.A., Marshall, K.L., Dimitrov, L.V., Nelson, A.M., Owens, D.M. and Lumpkin, E.A. (2019). Camphor white oil induces tumor regression through cytotoxic T cell-dependent mechanisms. Mol. Carcinog. 58(5): 722-734. doi: 10.1002/mc.22965
  • Hui, L.M., Zhao, G.D. and Zhao, J.J. (2015). δ-Cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest. Int. J. Clin. Exp. Pathol. 8(6): 6046.
  • Souza, H.D., de Sousa, R.P., Lira, B.F., Vilela, R.F., Borges, N.H., Siqueira-Junior, J.P.D., Lima, E.O., Jardim, J.U., da Silva, G.A., Barbosa-Filho, J.M. and Athayde-Filho, P.F.D. (2019). Synthesis, in silico study and antimicrobial evaluation of new selenoglycolicamides. J. Bra. Chem. Soc. 30(1): 188-197.
  • Tsantili-Kakoulidou, A. and Demopoulos, V. (2021). Drug-like Properties and Fraction Lipophilicity Index as a combined metric. ADMET and DMPK. 9(3): 177-190. doi: 10.5599/admet.1022
  • Gao, Y., Gesenberg, C. and Zheng, W. (2017). Oral formulations for preclinical studies: principle, design, and development considerations. In Developing solid oral dosage forms (pp. 455-495). Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.