18
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Chemical composition of leaf essential oil of Schinopsis lorentzii and its inhibitory effects against key enzymes relevant to type-2 diabetes: an emphasis on GC-MS chemical profiling and molecular docking studies

, , , &
Pages 731-743 | Received 10 Feb 2024, Accepted 12 May 2024, Published online: 22 May 2024

References

  • Kaur, R., Kaur, M., Singh, J. (2018). Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovascular Diabetology. 17 (1): 1-17 doi: 10.1186/s12933-018-0763-3
  • El-Nashar, H.A., Taleb, M., EL-Shazly, M., Zhao, C., Farag, M.A. (2024). Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytotherapy Research. 38(2): 662-693 doi: 10.1002/ptr.8067
  • Mukhtar, Y., Galalain, A., Yunusa, U. (2020). A modern overview on diabetes mellitus: a chronic endocrine disorder. European Journal of Biology. 5(2): 1-14 doi: 10.47672/ejb.409
  • Chaudhury, A., Duvoor, C., Reddy Dendi, V.S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N.S., Montales, M.T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C.K., Lohani, G.P., Mirza, W. (2017). Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne). 8: 6. doi: 10.3389/fendo.2017.00006
  • El-Nashar, H.A., Ali, A.A.M., Salem, Y.H. (2023). Genus Pimenta: an updated comprehensive review on botany, distribution, ethnopharmacology, phytochemistry and bio-logical approaches. Chemistry & Biodiversity. 20(12): e202300855 doi: 10.1002/cbdv.202300855
  • Derosa, G., Maffioli, P. (2012). α-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 8(5): 899-906. doi: 10.5114/aoms.2012.31621
  • Godbout, A., Chiasson, J.L. (2007). Who should benefit from the use of alpha-glucosidase inhibitors? Curr. Diab. Rep. 7(5): 333-339 doi: 10.1007/s11892-007-0055-x
  • Riyaphan, J., Pham, D.-C., Leong, M. K., Weng, C.-F. (2021). In Silico approaches to identify polyphenol compounds as α-glucosidase and α-amylase inhibitors against type-II diabetes. Biomolecules. 11(12): 1877 doi: 10.3390/biom11121877
  • Tundis, R., Loizzo, M.R., Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev. Med. Chem. 10(4): 315-331. doi: 10.2174/138955710791331007
  • Hung, H.Y., Qian, K., Morris-Natschke, S.L., Hsu, C.S., Lee, K.H. (2012). Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 29(5): 580-606. doi: 10.1039/c2np00074a
  • Ervina, M. (2020). The recent use of Swietenia mahagoni (L.) Jacq. as antidiabetes type 2 phytomedicine: A systematic review. Heliyon. 6(3): e03536 doi: 10.1016/j.heliyon.2020.e03536
  • Jamaddar, S., Sarkar, C., Akter, S., Mubarak, M.S., El-Nashar, H.A., El-Shazly, M., Islam, M.T. (2023). Brazilin: An updated literature-based review on its promising therapeutic approaches and toxicological studies. South African Journal of Botany. 158: 118-132 doi: 10.1016/j.sajb.2023.04.053
  • Tahir, H.U., Sarfraz, R.A., Ashraf, A., Adil, S. (2016). Chemical composition and antidiabetic activity of essential oils obtained from two spices (Syzygium aromaticum and Cuminum cyminum). International Journal of Food Properties. 19(10): 2156-2164 doi: 10.1080/10942912.2015.1110166
  • Ishaq, A.R., El-Nashar, H.A., Younis, T., Mangat, M.A., Shahzadi, M., Ul Haq, A.S., El-Shazly, M. (2022). Genus Lupinus (Fabaceae): A review of ethnobotanical, phytochemical and biological studies. Journal of Pharmacy and Pharmacology. 74(12): 1700-1717 doi: 10.1093/jpp/rgac058
  • Figueiredo, A.C., Barroso, J.G., Pedro, L.G., Scheffer, J.J. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal. 23(4): 213-226 doi: 10.1002/ffj.1875
  • El-Nashar, H.A., Eldehna, W.M., Al-Rashood, S.T., Alharbi, A., Eskandrani, R.O., Aly, S.H. (2021). GC/MS Analysis of essential oil and enzyme inhibitory activities of Syzygium cumini (Pamposia) grown in Egypt: chemical characterization and molecular docking studies. Molecules. 26(22): 6984 doi: 10.3390/molecules26226984
  • Lammari, N., Demautis, T., Louaer, O., Meniai, A.H., Casabianca, H., Bensouici, C., Devouassoux, G., Fessi, H., Bentaher, A., Elaïssari, A. (2021). Nanocapsules containing Saussurea lappa essential oil: Formulation, characterization, antidiabetic, anti-cholinesterase and anti-inflammatory potentials. International Journal of Pharmaceutics. 593: 120138 doi: 10.1016/j.ijpharm.2020.120138
  • El-Nashar, H.A., Al-Azzawi, M.A., Al-Kazzaz, H.H., Alghanimi, Y.K., Kocaebli, S.M., Alhmammi, M., Asad, A., Salam, T., El-Shazly, M., Ali, M.A. (2024). HPLC-ESI/MS-MS metabolic profiling of white pitaya fruit and cytotoxic potential against cervical cancer: comparative studies, synergistic effects, and molecular mechanistic approaches. Journal of Pharmaceutical and Biomedical Analysis. 116121 doi: 10.1016/j.jpba.2024.116121
  • Roitman, J.N., Merrill, G.B., Beck, J.J. (2011). Survey of ex situ fruit and leaf volatiles from several Pistacia cultivars grown in California. J. Sci. Food Agric. 91(5): 934-942. doi: 10.1002/jsfa.4268
  • Montanari, R.M., Barbosa, L.C., Demuner, A.J., Silva, C.J., Andrade, N.J., Ismail, F.M., Barbosa, M.C. (2012). Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells. Molecules. 17(8): 9728-9740. doi: 10.3390/molecules17089728
  • El-Nashar, H.A., El-Labbad, E.M., Al-Azzawi, M.A., Ashmawy, N.S. (2022). A new xanthone glycoside from Mangifera indica L.: physicochemical properties and in vitro anti-skin aging activities. Molecules. 27(9): 2609 doi: 10.3390/molecules27092609
  • Simionatto, E., Peres, M., Hess, S., Da Silva, C., Chagas, M., Poppi, N., Prates, C., Matos, M.d.F., Santos, E., De Carvalho, J. (2010). Chemical composition and cytotoxic activity of leaves essential oil from Mangifera indica var. coquinho (Anacardiaceae). Journal of Essential Oil Research. 22(6): 596-599 doi: 10.1080/10412905.2010.9700408
  • Vivanco, K., Montesinos, J.V., Cumbicus, N., Malagón, O., Gilardoni, G. (2023). The essential oil from leaves of Mauria heterophylla Kunth (Anacardiaceae): chemical and enantioselective analyses. Journal of Essential Oil Research. 35(6): 563-569 doi: 10.1080/10412905.2023.2266430
  • Douissa, F.B., Hayder, N., Chekir-Ghedira, L., Hammami, M., Ghedira, K., Mariotte, A.M., Dijoux-Franca, M.G. (2005). New study of the essential oil from leaves of Pistacia lentiscus L.(Anacardiaceae) from Tunisia. Flavour and Fragrance Journal. 20(4): 410-414 doi: 10.1002/ffj.1445
  • Basha, R.H., Sankaranarayanan, C. (2014). β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats. Acta Histochemica. 116(8): 1469-1479. doi: 10.1016/j.acthis.2014.10.001
  • Bandaru, S.D., Balraj, M., Badrachalam, R., Mani, V. (2023). Effect of β-Caryophyllene on oxidative stress, glucose metabolism in the skeletal muscle of high fat diet and fructose-induced type-2 diabetic adult male rats. Bioinformation. 19(4): 417-422. doi: 10.6026/97320630019417
  • Cardullo, N., Muccilli, V., Cunsolo, V., Tringali, C. (2020). Mass spectrometry and (1)H-NMR study of Schinopsis lorentzii (Quebracho) tannins as a source of hypoglycemic and antioxidant principles. Molecules. 25(14).
  • Venter, P.B., Sisa, M., van der Merwe, M.J., Bonnet, S.L., van der Westhuizen, J.H. (2012). Analysis of commercial proanthocyanidins. Part 1: the chemical composition of quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood extract. Phytochemistry. 73(1): 95-105. doi: 10.1016/j.phytochem.2011.10.006
  • Cejas, E., Pinto, S., Prosdócimo, F., Batallé, M., Barrios, H., Tellez, G., De Franceschi, M. (2011). Evaluation of quebracho red wood (Schinopsis lorentzii) polyphenolic vegetable extract for the reduction of coccidiosis in broiler chicks. International Journal of Poultry Science. 10(5): 344-349 doi: 10.3923/ijps.2011.344.349
  • Elfarnini, M., Abdel-hamid, A., Achir, M., Jamaleddine, J., Blaghen, M. (2018). Volatile compounds in the skin essential oil of Moroccan Feijoa sellowiana. European Journal of Medicinal Plants. 1-7 doi: 10.9734/EJMP/2018/40817
  • Todirascu-Ciornea, E., El-Nashar, H.A.S., Mostafa, N.M., Eldahshan, O.A., Boiangiu, R.S., Dumitru, G., Hritcu, L., Singab, A.N. B. (2019). Schinus terebinthifolius essential oil attenuates scopolamine-induced memory deficits via cholinergic modulation and antioxidant properties in a zebrafish model. Evid. Based Complement. Alternat. Med. 2019: 5256781. doi: 10.1155/2019/5256781
  • Mosbah, H., Louati, H., Boujbiha, M.A., Chahdoura, H., Snoussi, M., Flamini, G., Ascrizzi, R., Bouslema, A., Achour, L., Selmi, B. (2018). Phytochemical characterization, antioxidant, antimicrobial and pharmacological activities of Feijoa sellowiana leaves growing in Tunisia. Industrial Crops and Products. 112: 521-531. doi: 10.1016/j.indcrop.2017.12.051
  • El-Nashar, H.A.S., Eldehna, W.M., Al-Rashood, S.T., Alharbi, A., Eskandrani, R.O., Aly, S.H. (2021). GC/MS analysis of essential oil and enzyme inhibitory activities of Syzygium cumini (Pamposia) grown in Egypt: chemical characterization and molecular docking studies. Molecules. 26(22).
  • El-Nashar, H.A.S., Mostafa, N.M., El-Badry, M.A., Eldahshan, O.A., Singab, A.N.B. (2020). Chemical composition, antimicrobial and cytotoxic activities of essential oils from Schinus polygamus (Cav.) cabrera leaf and bark grown in Egypt. Nat Prod Res. 35(23): 5369-5372. doi: 10.1080/14786419.2020.1765343
  • Mashiach, E., Nussinov, R., Wolfson, H.J. (2010). FiberDock: Flexible induced-fit backbone refinement in molecular docking. Proteins. 78(6): 1503-1519. doi: 10.1002/prot.22668
  • Boehr, D.D., Nussinov, R., Wright, P.E. (2009). The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5(11): 789-796. doi: 10.1038/nchembio.232
  • Etsassala, N., Badmus, J.A., Marnewick, J.L., Egieyeh, S., Iwuoha, E.I., Nchu, F., Hussein, A.A. (2022). Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of Plectranthus ecklonii constituents. Antioxidants (Basel). 11(2).
  • ul Qamar, M.T., Kiran, S., Ashfaq, U.A., Javed, M.R., Anwar, F., Ali, M.A., Gilani, A.u.H. (2016). Discovery of novel dengue NS2B/NS3 protease inhibitors using pharmacophore modeling and molecular docking based virtual screening of the zinc database. International Journal of Pharmacology. 12(6): 621-632 doi: 10.3923/ijp.2016.621.632
  • Ali, H., Houghton, P., Soumyanath, A. (2006). α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology. 107(3): 449-455 doi: 10.1016/j.jep.2006.04.004
  • Ahmad, Z., Zamhuri, K.F., Yaacob, A., Siong, C.H., Selvarajah, M., Ismail, A., Hakim, M. N. (2012). In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (Bitter Gourd). Molecules. 17(8): 9631-9640 doi: 10.3390/molecules17089631
  • Cardullo, N., Muccilli, V., Cunsolo, V., Tringali, C. (2020). Mass spectrometry and 1H-NMR study of Schinopsis lorentzii (Quebracho) tannins as a source of hypoglycemic and antioxidant principles. Molecules. 25(14): 3257 doi: 10.3390/molecules25143257
  • Kumawat, V.S., Kaur, G. (2020). Insulinotropic and antidiabetic effects of β-caryophyllene with l-arginine in type 2 diabetic rats. Journal of Food Biochemistry. 44(4): e13156 doi: 10.1111/jfbc.13156
  • Stevens, N., Allred, K. (2022). Antidiabetic potential of volatile cinnamon oil: a review and exploration of mechanisms using in silico molecular docking simulations. Molecules. 27 (3): 853 doi: 10.3390/molecules27030853
  • Usman, L., Oguntoye, O., Ismaeel, R. (2020). Effect of seasonal variation on chemical composition, antidiabetic and antioxidant potentials of leaf essential oil of Eucalyptus globulus L. Journal of Essential Oil Bearing Plants. 23(6): 1314-1323 doi: 10.1080/0972060X.2020.1862710
  • Hajlaoui, H., Arraouadi, S., Noumi, E., Aouadi, K., Adnan, M., Khan, M.A., Kadri, A., Snoussi, M. (2021). Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules. 26(12): 3625 doi: 10.3390/molecules26123625
  • Kaskoos, R.A. (2019). GC/MS Profile and in-vitro Antidiabetic Activity of Cinnamomum zeylanicum Blume., Bark and Trachyspermum ammi (L.) Sprague, Seeds. Journal of Essential Oil Bearing Plants. 22(2): 535-544 doi: 10.1080/0972060X.2019.1612281
  • Özbek, H., Sever, B. (2017). Anti-inflammatory and hypoglycemic activities of alpha-pinene. ACTA Pharmaceutica Sciencia. 55(4): doi: 10.23893/1307-2080.APS.05522
  • Ben Lamine, J., Boujbiha, M.A., Dahane, S., Cherifa, A.B., Khlifi, A., Chahdoura, H., Yakoubi, M.T., Ferchichi, S., El Ayeb, N., Achour, L. (2019). α-Amylase and α-glucosidase inhibitor effects and pancreatic response to diabetes mellitus on Wistar rats of Ephedra alata areal part decoction with immunohistochemical analyses. Environ. Sci. Pollut. Res Int. 26(10): 9739-9754. doi: 10.1007/s11356-019-04339-3
  • Hiyoshi, T., Fujiwara, M., Yao, Z. (2017). Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes. J. Biomed. Res. 33(1): 1-16. doi: 10.7555/JBR.31.20160164
  • Ahmed, S., Ali, M.C., Ruma, R.A., Mahmud, S., Paul, G.K., Saleh, M.A., Alshahrani, M.M., Obaidullah, A.J., Biswas, S.K., Rahman, M.M., Rahman, M.M., Islam, M.R. (2022). Molecular Docking and dynamics simulation of natural compounds from betel leaves (Piper betle L.) for investigating the potential inhibition of alpha-amylase and alpha-glucosidase of type 2 diabetes. Molecules. 27(14).
  • Kazeem, M.I., Adamson, J.O., Ogunwande, I.A. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. Biomed. Res. Int. 2013: 527570. doi: 10.1155/2013/527570
  • Balfour, J.A., McTavish, D. (1993). Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs. 46(6): 1025-1054. doi: 10.2165/00003495-199346060-00007
  • Ademiluyi, A.O., Oboh, G. (2013). Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit α-amylase and α-glucosidase activities in vitro. J. Med. Food. 16(1): 88-93. doi: 10.1089/jmf.2012.0004
  • Noor, Z.I., Ahmed, D., Rehman, H.M., Qamar, M.T., Froeyen, M., Ahmad, S., Mirza, M.U. (2019). In vitro antidiabetic, anti-obesity and antioxidant analysis of Ocimum basilicum aerial biomass and in silico molecular docking simulations with alpha-amylase and lipase enzymes. Biology (Basel). 8(4).
  • Gilles, C., Astier, J.P., Marchis-Mouren, G., Cambillau, C., Payan, F. (1996). Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur. J. Biochem. 238(2): 561-569. doi: 10.1111/j.1432-1033.1996.0561z.x
  • Tagami, T., Yamashita, K., Okuyama, M., Mori, H., Yao, M., Kimura, A. (2013). Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. J. Biol. Chem. 288(26): 19296-19303. doi: 10.1074/jbc.M113.465211
  • Boström, J., Greenwood, J.R., Gottfries, J. (2003). Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J. Mol. Graph. Model. 21(5): 449-462. doi: 10.1016/S1093-3263(02)00204-8
  • Winkler, F.K., D'Arcy, A., Hunziker, W. (1990). Structure of human pancreatic lipase. Nature. 343(6260): 771-774. doi: 10.1038/343771a0
  • Quezada-Calvillo, R., Robayo-Torres, C.C., Opekun, A.R., Sen, P., Ao, Z., Hamaker, B.R., Quaroni, A., Brayer, G.D., Wattler, S., Nehls, M.C., Sterchi, E.E., Nichols, B.L. (2007). Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. J. Nutr. 137(7): 1725-1733. doi: 10.1093/jn/137.7.1725
  • Martin, A.E., Montgomery, P.A. (1996). Acarbose: an alpha-glucosidase inhibitor. Am. J. Health Syst. Pharm. 53(19): 2277-2290. doi: 10.1093/ajhp/53.19.2277

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.