725
Views
0
CrossRef citations to date
0
Altmetric
Articles

Doubly semi-equivelar maps on the plane and the torus

&
Pages 296-310 | Received 29 Aug 2022, Accepted 08 Nov 2022, Published online: 23 Nov 2022

References

  • Altshuler, A. (1973). Construction and enumeration of regular maps on the torus. Discrete Math. 4(3): 201–217.
  • Babai, L. (1991). Vertex-transitive graphs and vertex-transitive maps. J. Graph Theory 15(6): 587–627.
  • Brehm, U, Kühnel, W. (2008). Equivelar maps on the torus. Eur. J. Combin. 29(8): 1843–1861.
  • Brehm, U, Schulte, E. (1997). Handbook of Discrete and Computational Geometry. Boca Raton: CRC Press.
  • Coxter, H. S. M. (1940). Regular and semi-regular polytopes. I Math. Z. 46: 380–407.
  • Coxter, H. S. M, Moser, W. O. J. (1980). Generators and Relations from Discrete Groups, 4th ed.; New York, NY: Springer.
  • Datta, B, Maity, D. (2017). Semi-equivelar and vertex transitive maps on torus. Beitr. Algebra Geom. 58(3): 617–634.
  • Datta, B, Maity, D. (2022). Platonic solids, Archimedean solids and semi-equivelar maps on the sphere. Discrete Math. 345(1): 112652.
  • Datta, B, Nilakantan, N. (2001). Equivelar polyhedra with few vertices. Discrete Comput. Geom. 26(3): 429–461.
  • Datta, B, Upadhyay, A. K. (2005). Degree-regular triangulations of torus and Klein bottle. Proc. Math. Sci. 115(3): 279–307.
  • Datta, B, Upadhyay, A. K. (2006). Degree-regular triangulations of the double torus. Forum Math. 18: 1011–1025.
  • Grünbaum, B, Shephard, G. C. (1987). Tilings and Patterns. New York: W. H. Freeman and com.
  • Karabáš, J, Nedela, R. (2007). Archimedean solids of genus 2. Electron. Notes Disc. Math. 28: 331–339.
  • Karabáš, J, Nedela, R. (2012). Archimedean maps of higher genera. Math. Comp. 81(277): 569–583.
  • Kurth, W. (1986). Enumeration of Platonic maps on the torus. Discrete Math. 61(1): 71–83.
  • Lili, Z. (2008). A result on combinatorial curvature for embedded graphs on a surface. Discrete Math. 308: 6588–6595.
  • Lutz, F. H. (1991). Triangulated manifolds with few vertices and vertex-transitive group actions Thesis (Tu-Berlin) Shaker Verlag, Aachen.
  • Maity, D, Upadhyay, A. K. (2018). On enumeration of a class of toroidal graphs. Contri. to Disc. Math. 13: 79–119.
  • Negami, S. (1983). Uniqueness and faithfulness of embedding of toroidal graphs. Discrete Math. 44(2): 161–180.
  • Reti, T., Bitay, E, Kosztolany, Z. (2005). On the polyhedral graphs with positive combinatorial curvature. Acta Polytech. Hungar. 2: 19–37.
  • Singh, Y, Tiwari, A. K. (2022). Some doubly semi-equivelar maps on the plane and the torus arXiv: 2005.00332v3.
  • Sǔch, O. (2011). Vertex-transitive maps on a torus. Acta Math. Univ. Comen. 53: 1–30.
  • Sǔch, O. (2011). Vertex-transitive maps on the Klein bottle. Ars Math. Contemp. 4: 363–374.
  • Thomassen, C. (1991). Tillings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface. Trans. Amer. Math. Soc. 323(2): 605–635.
  • Tiwari, A. K., Tripathi, A., Singh, Y, Gupta, P. (2020). Doubly semi-equivelar maps on torus and Klein bottle. J. Math. 2020: 1–14.
  • Tiwari, A. K, Upadhyay, A. K. (2017). Semi-equivelar maps on the surface of Euler characteristic –1. Note. Mat. 37: 91–102.
  • Tiwari, A. K, Upadhyay, A. K. (2017). Semi-equivelar maps on the torus and the Klein bottle with few vertices. Math. Slovaca 67: 519–532.
  • Upadhyay, A. K., Tiwari, A. K, Maity, D. (2014). Semi-equivelar maps. Beitr. Algebra Geom. 55(1): 229–242.