1,306
Views
11
CrossRef citations to date
0
Altmetric
Articles

Regional thermo-rheological field related to granite emplacement in the upper crust: implications for the Larderello area (Tuscany, Italy)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 225-240 | Received 26 Sep 2017, Accepted 12 Jun 2018, Published online: 25 Jun 2018

References

  • Acocella, V., & Rossetti, F. (2002). The role of extensional tectonics at different crustal levels on granite ascent and emplacement: An example from Tuscany (Italy). Tectonophysics, 354, 71–83.
  • Allis, R. G., Armstrong, P. A., & Funnel, R. H. (1995). Implications of a high heat flow anomaly around new plymouth, North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 38, 121–130.
  • Anderson, J. D. (1995). Computational fluid dynamics: the basics with applications (International ed).  New York\Singapore: McGraw-Hill.
  • Annen, C. (2011). Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimension and plutonism-volcanism relationships. Tectonophysics, 500, 3–10.
  • Baldi, P., Bellani, S., Ceccarelli, A., Fiordelisi, A., Squarci, P., & Taffi, L. (1994). Correlazioni tra le anomalie termiche ed altri elementi geofisici e strutturali della Toscana meridionale. [Correlation between thermal anomalies and other geophysical and structural elements of the Southern Tuscany]. In Studi Geologici Camerti, Volume Speciale (1) (pp. 139–149). Istituto di Mineralogia e Geologia dell'Università di Camerino.
  • Batini, F., Bertini, G., Gianelli, G., Pandeli, E., Puxeddu, M., & Villa, I. M. (1985a). Deep structure, age and evolution of the larderello-travale geothermal field. Geothermal Resource Council Transaction, 9, 253–259.
  • Batini, F., Brogi, A., Lazzarotto, A., Liotta, D., & Pandeli, E. (2003). Geological features of larderello-travale and mt. amiata geothermal areas (southern Tuscany, Italy). Episodes, 6, 239–244.
  • Batini, F., Duprat, A., & Nicolich, R. (1985b). Contribution of seismic reflection to the study of geothermal reservoirs in Tuscany (Italy). Geothermal Resources Council Transactions, 9, 245–252.
  • Becker, T. W., & Kaus, B. J. P. (2016). Numerical modeling of earth systems, an introduction to computational methods with focus on solid earth applications of continuum mechanics. Lecture Notes for USC GEOL557, 1.1.4 (pp. 222).
  • Bellani, S., Brogi, A., Lazzarotto, A., Liotta, D., & Ranalli, G. (2004). Heat flow, deep temperatures and extensional structures in the larderello geothermal field (Italy): Constraints on geothermal fluid flow. Journal of Volcanology and Geothermal Research, 132, 15–29.
  • Bellani, S., Magro, G., Brogi, A., Lazzarotto, A., & Liotta, D. (2005) . Insights into the larderello geothermal field: structural setting and distribution of thermal and 3he anomalies. Proceedings World Geothermal Congress. Antalya, TR.
  • Bertini, G., Casini, M., Gianelli, G., & Pandeli, E. (2006). Geological structure of a long-living geothermal system, Larderello, Italy. Terra Nova, 18, 163–169.
  • Brogi, A., Lazzarotto, A., Liotta, D., Nicolich, R., & Ranalli, G. (2003). L’orizzonte K nella crosta dell’area geotermica di lardello (toscana meridionale). [the k-horizon in the crust of the larderello geothermal area (southern tuscany)]. Bollettino Della Società Geologica Italiana, 122, 103–116.
  • Brogi, A., & Liotta, D. (2006). Understanding the crustal structures of southern tuscany: the contribution of the crop18 project. Bollettino Di Geofisica Teorica E Applicata, 47(3), 401–423.
  • Bucher, K., & Grapes, R. (2011). Petrogenesis of Metamorphic Rocks. Verlag Berlin Heidelberg: Springer.
  • Calcagnile, G., & Panza, G. F. (1980). The main characteristics of the lithosphere-asthenosphere system and surrounding regions. Pure and Applied Geophysics, 119, 865–879.
  • Calore, C., Celati, R., Gianelli, G., Norton, D., & Squarci, P. (1981). Studi sull’origine del sistema geotermico di Larderello. [Studies about the origin of the Larderello geothermal system]. Proceeding 2nd Seminar of Finalized Energy Program, Geothermal Energy, Sub-Project, CNR, Rome (pp. 218–225).
  • Cameli, G. M., Dini, I., & Liotta, D. (1993). Upper crustal structure of the Larderello geothermal field as a feature of post-collisional extensional tectonics (Southern Tuscany, Italy). Tectonophysics, 224, 413–423.
  • Cameli, G. M., Dini, I., & Liotta, D. (1998). Brittle/ductile boundary from seismic reflection lines of southern Tuscany (Northern Apennines, Italy). Memorie Della Società Geologica Italiana, 52, 153–162.
  • Cathles, L. M., Erendi, A. H. J., & Barrie, T. (1997). How long can a hydrothermal system be sustained by a single intrusive event?. Economic Geology, 92, 766–771.
  • Cruden, A. R. (1998). On the emplacement of tabular granites. Journal of Geological Society London, 155, 853–862.
  • Dallmeyer, R. D., & Liotta, D. (1998). Extension, uplift of rocks and cooling ages in thinned crustal provinces: The Larderello geothermal area (inner Northern Apennines, Italy). Geological Magazine, 135(2), 193–202.
  • Dalrymple, G. B., Grove, M., Lovera, O. M., Harrison, T. M., Hulen, J. B., & Lanphere, M. A. (1999). Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: A 40Ar/39Ar and U–Pb study. Earth and Planetary Science Letters, 173, 285–298.
  • de Lorenzo, S., Di Renzo, V., Civetta, L., D’Antonio, M., & Gasparini, P. (2006). Thermal model of the Vesuvius magma chamber. Geophysical Research Letters, 33, L17302.
  • De Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., & Tikoff, B. (2011). Multiscale magmatic activity cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics, 500, 20–33.
  • Del Moro, A., Puxeddu, M., Radicati Di Brozolo, F., & Villa, I. M. (1982). Rb-Sr and K-Ar Ages on Minerals at Temperatures of 300°-400° C from Deep Wells in the Larderello Geothermal Field (Italy). Contributions to Mineralogy and Petrology, 81, 340–349.
  • Della Vedova, B., Bellani, S., Pellis, G., & Squarci, P. (2001). Anatomy of an orogen: The Apennines and Adjacent Mediterranean Basins. In G. B. Vai & I. P. Martini (Eds.), Deep temperature and surface heat flow distribution (pp. 65–76). Dordrecht: Springer.
  • Della Vedova, B., Vecellio, C., Bellani, S., & Tinivella, U. (2008). Thermal modelling of the Larderello geothermal field (Tuscany, Italy). International Journal of Earth Sciences, 97, 317–332.
  • Dini, A., Gianelli, G., Puxeddu, M., & Ruggieri, G. (2005). Origin and evolution of Pliocene-Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos, 81, 1–31.
  • Dini, A., Mazzarini, F., Musumeci, G., & Rocchi, S. (2008). Multiple hydro-fracturing by boron-rich fluids in the Late Miocene contact aureole of eastern Elba Island (Tuscany, Italy). Terra Nova, 20, 318–326.
  • Ebigbo, A., Niederau, J., Marquart, G., Dini, I., Thorwart, M., Rabbel, W., … Clauser, C. (2016). Influence of depth, temperature, and structure of a crustal heat source on the geothermal reservoirs of Tuscany: Numerical modelling and sensitivity study. Geothermal Energy, 4, 5.
  • Erkan, K., Blackwell, D. D., & Leidig, M. (2005). Crustal thermal regime at the Geysers/Clear Lake area, California. Proceedings World Geothermal Congress. Antalya, TR.
  • Fiordelisi, A., Mackie, R. L., Madden, T., Manzella, A., & Rieven, S. A. (1995). Application of the magnetotelluric method using a remote-remote refence system for characterizing deep geothermal system. In E. Barbier, G. Frye, E. Iglesias, & G. Palmasson (Eds). Proceedings Worlds Geothermal Congress, (pp. 893–897). Florence, IT.
  • Foley, J. E., Toksoz, M. N., & Batini, F. (1992). Inversion of teleseismic travel time residuals for velocity structure in the Larderello geothermal system, Italy. Geophysical Research Letters, 19, 5–8.
  • Gianelli, G. (1998). Condizioni di pressione e temperatura del termometamorfismo nel sistema geotermico di larderello. [pressure and temperature conditions of the termometamorphism in the larderello geothermic system]. Atti soc. tosc. sci. nat., mem., Serie A, 105, 17–35.
  • Gianelli, G. (2008). A comparative analysis of the geothermal fields of Larderello and Mt. Amiata, Italy. In H. I. Ueckermann (Ed.), Geothermal energy research trends (pp. 59–85). New York: Nova Science Publishers.
  • Gianelli, G., & Laurenzi, M. A. (2001). Age and cooling rate of the geothermal system of Larderello. Transaction-Geothermal Resource Council, 25, 731–735.
  • Gianelli, G., Manzella, A., & Puxeddu, M. (1997). Crustal models of the geothermal areas of southern Tuscany (Italy). Tectonophysics, 281, 221–239.
  • Gianelli, G., Puxeddu, M., Batini, F., Bertini, G., Dini, I., Pandeli, E., & Nicolich, R. (1988). Geological model of a young volcano-plutonic system: The geothermal region of Monte Amiata (Tuscany, Italy). Geothermics, 17(5–6), 719–734.
  • Gola, G., Bertini, G., Bonini, M., Botteghi, S., Brogi, A., De Franco, R., … Trumpy, E. (2017). Data integration and conceptual modelling of the Larderello geothermal area, Italy. Energy Procedia, 125, 300–309.
  • Gupta, M. L. (1981). Surface heat flow and igneous intrusions in the Cambay basin, India. Journal of Volcanology and Geothermal Research, 10, 279–292.
  • Kappelmeyer, O., & Hänel, R. (1974). Geothermics with special reference to application [Geoexploration Monograph]. In Rosenbach, O. & Morelli, C. (Eds), Geoexploration Monographs, Series 1 (pp. 4). Berlin, Stuttgart: Gebr. Borntraeger.
  • Lachenbruch, A. H. (1970). Crustal temperature and heat production: Implications of the linear heat-flow relation. Journal of Geophysical Research, 75, 3291–3300.
  • Langone, A., Caggianelli, A., Festa, V., & Prosser, G. (2014). Time Constraints on the Building of the Serre Batholith: Consequences for the Thermal Evolution of the Hercynian Continental Crust Exposed in Calabria (Southern Italy). The Journal of Geology, 122, 183–199.
  • Liotta, D., & Ranalli, G. (1999). Correlation between seismic reflectivity and rheology in extended lithosphere: Southern Tuscany, inner Northern Apennines, Italy. Tectonophysics, 315, 109–122.
  • Magro, G., Bellani, S., & Della Vedova, B. (2009). The deep roots of the Larderello Geothermal Field (Italy) from the Heat Flux and 3He Anomalies. GRC Transactions, 33, 405–410.
  • Mongelli, F., Palumbo, F., Puxeddu, M., Villa, I. M., & Zito, G. (1998). Interpretation of the geothermal anomaly of Larderello, Italy. Memorie Della Società Geologica Italiana, 13, 305–318.
  • Muller, W. H., & Briegel, U. (1978). The rheological behaviour of polycrystalline anhydrite. Eclogae Geologicae Helvetiae, 71, 397–407.
  • Norton, D., & Knight, J. (1977). Transport phenomena in hydrothermal systems: Cooling plutons. American Journal of Science, 277, 937–981.
  • Peccerillo, A. (2005). Plio-Quaternary Volcanism in Italy, Petrology, Geochemistry, Geodynamics. Verlag Berlin Heidelberg: Springer.
  • Pollack, H. N., Hurter, S. J., & Johnson, J. R. (1993). Heat flow from the Earth’s interior: Analysis of the global data set. Reviews of Geophysics, 31, 267–280.
  • Ponziani, F., De Franco, R., Minelli, G., Biella, G., Federico, C., & Pialli, G. (1995). Crustal shortening and duplication of the Moho in the Northern Apennines: A view from seismic refraction data. Tectonophysics, 252, 391–418.
  • Ranalli, G. (1995). Rheology of the Earth. London, GB: Chapman and Hall.
  • Ranalli, G., & Rybach, L. (2005). Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples. Journal of Volcanology and Geothermal Research, 148, 3–19.
  • Reiter, M., Chamberlain, R. M., & Love, D. W. (2010). New data reflect on the thermal antiquity of the Socorro magma body locale, Rio Grande Rift, New Mexico. Lithosphere, 2, 447–453.
  • Rikitake, T. (1995). Intrusion and cooling of magma-comparison between 2D and 3D analyses. Journal of Physics of the Earth, 43, 715–728.
  • Romagnoli, P., Arias, A., Barelli, A., Cei, M., & Casini, M. (2010). An updated numerical model of the Larderello–Travale geothermal system, Italy. Geothermics, 39, 292–313.
  • Rossetti, F., Balsamo, F., Villa, I. M., Bouybaouenne, M., Facenna, C., & Funiciello, R. (2008). Pliocene-Pleistocene HT-LP metamorphism during multiple granitic intrusions in the southern branch of the Larderello geothermal field (southern Tuscany, Italy). Journal of the Geological Society, London, 165, 247–262.
  • Saccorotti, G., Piccinini, D., Zupo, M., Mazzarini, F., Chiarabba, C., Piana Agostinetti, N., … Bagagli, M. (2014). The deep structure of the Larderello-Travale geothermal field (Italy) from integrated, passive seismic investigations. Energy Procedia, 59, 227–234.
  • Santilano, A., Manzella, A., Gianelli, G., Donato, A., Gola, G., Nardini, I., … Botteghi, S. (2015). Convective, intrusive geothermal plays: What about tectonics?. Geothermal Energy Science, 3, 51–59.
  • Shea, W. T., & Kronenberg, A. K. (1992). Rheology and Deformation Mechanism of an Isotropic Mica Schist. Journal of Geophysical Research, 97, B11, 201–15, 237
  • Smith, S. A. F., Holdsworth, R. E., & Collettini, C. (2011). Interactions between low-angle normal faults and plutonism in the upper crust: Insights from the Island of Elba, Italy. GSA Bullettin, 123(1–2), 329–346.
  • Spear, F. S. (1993). Metamorphic Phase equilibria and Pressure-Temperature-Time Paths. Washington DC, USA: Mineralogical Society of America.
  • Spinelli, R., Casini, M., Costantino, N., Giudetti, G., Ciuffi, S., & Dini, A. (2015). Anatomy of Granite Intrusions in the Travale Geothermal Field (Italy): A First Geochemical-Petrographic-spectral Gamma Ray Log Approach. Proceedings World Geothermal Congress. Melbourne, AUS.
  • Stimac, J., Goff, F., & Goff, C. J. (2015). Intrusion-related Geothermal Systems. In H. Sigurdsson, B. Houghton, S. McNutt, H. Rymer, & J. Stix (Eds.), The Encyclopedia of Volcanoes (pp. 799–822).  New Mexico: Academic Press.
  • Stimac, J., Goff, F., & Wohletz, K. (1997). Thermal modelling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development. Los Alamos Report LA-12778-MS, 38p.
  • Stimac, J., Goff, F., & Wohletz, K. (2001). Thermal modelling of the Clear Lake magmatic-hydrothermal system, California, USA. Geothermics, 30, 349–390.
  • Turcotte, D., & Schubert, G. (2014). Geodynamics. New York, USA: Cambridge University Press.
  • Villa, I. M., Ruggieri, G., & Puxeddu, M. (2001). Geochronology of magmatic and hydrothermal micas from the Larderello geothermal field, Italy. In R. Cidu (Ed.), Water Rock Interaction (Vol. 2, pp. 1589–1592). Lisse: N: Balkema Publishers.
  • Villa, I. M., Gianelli, G., Puxeddu, M., Bertini, G., & Pandeli, E. (1987). Granitic dykes of 3.8 Ma age from 3.5 km deep geothermal well at Larderello (Italy). Rendiconti Della Società Italiana Di Mineralogia E Petrologia, 42, 364.
  • Villa, I. M., & Puxeddu, M. (1994). Geochronology of the Larderello geothermal field: New data and the “closure temperature” issue. Contributions to Mineralogy and Petrology, 115, 415–426.
  • Villa, I. M., Ruggieri, G., & Puxeddu, M. (1997). Petrological and geochronological discrimination of two white-mica generations in a granite cored from the Larderello-Travale geothermal field (Italy). European Journal of Mineralogy, 9, 563–568.
  • Villa, I. M., Ruggieri, G., Puxeddu, M., & Bertini, G. (2006). Geochronology and isotope transport systematics in a subsurface granite from Larderello-Travale geothermal system (Italy). Journal of Volcanology and Geothermal Research, 152, 20–50.