4,863
Views
25
CrossRef citations to date
0
Altmetric
Articles

What about people in pedestrian navigation?

, &
Pages 135-150 | Received 22 Aug 2015, Accepted 29 Oct 2015, Published online: 18 Jan 2016

References

  • Golledge, R.G.; Stimson, R.J. Spatial Behavior: A Geographic Perspective; The Guilford Press: New York, 1997.
  • May, A.; Ross, T.; Bayer, S.H.; Tarkiainen, M.J. Pedestrian Navigation Aids: Information Requirements and Design Implications. Personal Ubiquitous Comput. 2003, 7 (6), 331–338.10.1007/s00779-003-0248-5
  • Radoczky, V. How to Design a Pedestrian Navigation System for Indoor and Outdoor Environments. In Location Based Services and Telecartography: Gartner, G., Cartwright, W., Peterson, M.P., Eds.; Springer-Verlag: Berlin, 2007; pp 301−316.
  • Li, C. User Preferences, Information Transactions and Location-Based Services: A Study of Urban Pedestrian Way Finding. Comput. Environ. Urban Syst. 2006, 30 (6), 726–740.10.1016/j.compenvurbsys.2006.02.008
  • Maslow, A.H. A Theory of Human Motivation. Psychol. Rev. 1943, 50, 370–396.10.1037/h0054346
  • Maslow, A.H. Motivation and Personality; Harper: New York, 1954.
  • Maslow, A.H. Toward a Psychology of Being; Van Nostrand: New York, 1968.
  • Golledge, R.G. Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes; Johns Hopkins University Press: Baltimore, MD, 1999.
  • Farr, A.C.; Kleinschmidt, T.; Yarlagadda, P.; Mengersen, K. Wayfinding: A Simple Concept, a Complex Process. Trans. Rev. 2012, 32 (6), 715–743.10.1080/01441647.2012.712555
  • Raubal, M.; Worboys, M. A Formal Model of the Process of Wayfinding in Built Environments. In Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science: Freksa, C., Mark, D.M., Eds.; Lecture Notes in Computer Science, Volume 1661; Springer-Verlag: Heidelberg, 1999; pp 381−399.
  • Ying Chia, W. Mobile 3D Library Map: An Innovative Wayfinding Tool for Library Users on the Move. Library Hi Tech News 2014, 31 (3), 9–10.10.1108/LHTN-03-2014-0017
  • Caduff, D.; Timpf, S. The Landmark Spider: Representing Landmark Knowledge for Wayfinding Tasks. In Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance: Barkowsky, T., Freksa, C., Hegarty, M., Lower, R., Eds.; AAAI Press: Stanford, CA, 2005; pp 30–35.
  • Hile, H.; Vedantham, R.; Cuellar, G.; Liu, A.; Gelfand, N.; Grzeszczuk, R.; Borriello, G. Landmark-Based Pedestrian Navigation from Collections of Geotagged Photos. Proceedings of the 7th International Conference on Mobile and Ubiquitous Multimedia, Umea, Sweden. ACM: New York, December 3–5, 2008; pp 145–152.
  • Hile, H.; Grzeszczuk, R.; Liu, A.; Vedantham, R.; Košecka, J.; Borriello, G. Landmark-Based Pedestrian Navigation with Enhanced Spatial Reasoning. In Proceedings of Seventh International Conference on Pervasive Computing 2009, Pervasive 2009: Tokuda, H., Beigl, M., Friday, A., Bernheim Brush, A.J., Tobe, Y., Eds.; Nara, Japan. Springer: Berlin, May 11–14, 2009; pp 59–76.
  • Oomes, A.; Bojic, M.; Bazen, G. Supporting Cognitive Collage Creation for Pedestrian Navigation. In Engineering Psychology and Cognitive Ergonomics: Hutchison, D., Ed.; Springer-Verlag: Berlin, 2009; pp 111–119.10.1007/978-3-642-02728-4
  • Duckham, M.; Winter, S.; Robinson, M. Including Landmarks in Routing Instructions. J. Location Based Serv. 2010, 4 (1), 28–52.10.1080/17489721003785602
  • Fang, Z.; Li, Q.; Zhang, X. A Multiobjective Model for Generating Optimal Landmark Sequences in Pedestrian Navigation Applications. Int. J. Geogr. Inf. Sci. 2011, 25 (5), 785–805.10.1080/13658816.2010.500290
  • Roger, M.; Bonnardel, N.; Le Bigot, L. Landmarks’ Use in Speech Map Navigation Tasks. J. Environ. Psychol. 2011, 31 (2), 192–199.10.1016/j.jenvp.2010.12.003
  • Gluck, M. Making Sense of Human Wayfinding: Review of Cognitive and Linguistic Knowledge for Personal Navigation with a New Research Direction. In Cognitive and Linguistic Aspects of Geographic Space: Mark, D.M.; Frank, A.U., Eds., Springer: Dordrecht, 1991; pp 117−135.10.1007/978-94-011-2606-9
  • Tan, A.; Timmermans, H.; de Vries, B. Route Knowledge in Complex Environments: An Analysis of Pedestrian Recall Using Stereoscopic Panoramic Interactive Navigation. Spatial Cognit. Comput. 2006, 6 (3), 279–293.
  • Caduff, D.; Timpf, S. On the Assessment of Landmark Salience for Human Navigation. Cognit. Process. 2008, 9 (4), 249–267.10.1007/s10339-007-0199-2
  • Sorrows, M.E.; Hirtle, S.C. The Nature of Landmarks for Real and Electronic Spaces. In Proceedings of the International Conference on Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science: Freksa, C. and Mark, D.M., Eds.; Lecture Notes in Computer Science, Vol. 1661; Springer: Berlin, 1999; pp 37–50.
  • Raubal, M.; Winter, S. Enriching Wayfinding Instructions with Local Landmarks. In Proceedings of the Second International Conference on Geographic Information Science: Egenhofer, M. and Mark, D., Eds.; Lecture notes in computer science, Vol. 2478; Springer: Berlin, 2002; pp 243–259.
  • Klippel, A.; Winter, S. Structural Salience of Landmarks for Route Directions. In Spatial Information Theory: Cohn, A.G. and Mark, D.M., Eds.; Lecture Notes in Computer Science, Vol. 3693; Springer: Berlin, 2005; pp 347–362.10.1007/11556114
  • Spiers, H.; Maguire, E. The Dynamic Nature of Cognition during Wayfinding. J. Environ. Psychol. 2008, 28, 232–249.10.1016/j.jenvp.2008.02.006
  • Peters, D.; Wu, Y.; Winter, S. Testing Landmark Identification Theories in Virtual Environments. In Spatial Cognition VII, Vol. 6222: Hölscher, C., Shipley, T.F., Belardinelli, M.O., Bateman, J.A. and Newcombe, N.S., Eds.; Springer: Berlin, 2010; pp 54–69.10.1007/978-3-642-14749-4
  • Jacob, R.; Winstanley, A.; Togher, N.; Roche, R.; Mooney, P. Pedestrian Navigation Using the Sense of Touch. Comput. Environ. Urban Syst. 2012, 36, 513–525.10.1016/j.compenvurbsys.2012.10.001
  • Rehrl, K.; Häusler, E.; Leitinger, S.; Bell, D. Pedestrian Navigation with Augmented Reality, Voice and Digital Map: Final Results from an in Situ Field Study Assessing Performance and User Experience. J. Location Based Serv. 2014, 8 (2), 75–96.10.1080/17489725.2014.946975
  • Pugliesi, E.A.; Decanini, M.M.S.; Tachibana, V.M. Evaluation of the Cartographic Communication Performance of a Route Guidance and Navigation System. Cartogr. Geogr. Inform. Sci. 2009, 36 (2), 193–207.10.1559/152304009788188745
  • Delikostidis, I.; van Elzakker, C.J.M.; Kraak, M.-J. Overcoming Challenges in Developing More Usable Pedestrian Navigation Systems. Cartogr. Geogr. Inform. Sci. [Online] 2015. DOI: 10.1080/15230406.2015.1031180. http://www.tandfonline.com/doi/abs/10.1080"/15230406.2015.1031180?journalCode=tcag20
  • Brown, M.; Houghton, R.; Sharples, S.; Morley, J. The Attribution of Success When Using Navigation Aids. Ergonomics 2015, 58 (3), 426–433.10.1080/00140139.2014.977827
  • Goodman, J.; Brewster, S.A.; Gray, P. How Can We Best Use Landmarks to Support Older People in Navigation? Behav. Inform. Technol. 2005, 24 (1), 3–20.
  • Walford, N.; Samarasundera, E.; Phillips, J.; Hockey, A.; Foreman, N. Older People’s Navigation of Urban Areas as Pedestrians: Measuring Quality of the Built Environment Using Oral Narratives and Virtual Routes. Landsc. Urban Plan. 2011, 100 (1–2), 163–168.10.1016/j.landurbplan.2010.12.006
  • Gaunet, F.; Briffault, X. Exploring the Functional Specifications of a Localized Wayfinding Verbal Aid for Blind Pedestrians: Simple and Structured Urban Areas. Human Comput. Interact. 2005, 20 (3), 267–314.10.1207/s15327051hci2003_2
  • Swobodzinski, M.; Raubal, M. An Indoor Routing Algorithm for the Blind: Development and Comparison to a Routing Algorithm for the Sighted. Int. J. Geogr. Inf. Sci. 2009, 23 (10), 1315–1343.10.1080/13658810802421115
  • Bousbia-Salah, M.; Bettayeb, M.; Larbi, A. A Navigation Aid for Blind People. J. Intell. Robot. Syst. 2011, 64 (3), 387–400.10.1007/s10846-011-9555-7
  • Park, S.; Choi, I.-M.; Kim, S.-S.; Kim, S.-M. A Portable mid-Range Localization System Using Infrared LEDs for Visually Impaired People. Infrared Phys. Technol. 2014, 67, 583–589.10.1016/j.infrared.2014.09.023
  • Golledge, R.G.; Klatzky, R.L.; Loomis, J.M.; Speigle, J.; Tietz, J. A Geographical Information System for a GPS Based Personal Guidance System. Int. J. Geogr. Inf. Sci. 1998, 12 (7), 727–749.10.1080/136588198241635
  • Huang, H.; Gartner, G. Collective Intelligence-Based Route Recommendation for Assisting Pedestrian Wayfinding in the Era of Web 2.0. J. Location Based Serv. 2012, 6 (1), 1–21.10.1080/17489725.2011.625302
  • Dang, C.; Iwai, M.; Tobe, Y.; Umeda, K.; Sezaki, K. A Framework for Pedestrian Comfort Navigation Using Multi-Modal Environmental Sensors. Pervasive Mobile Comput. 2013, 9 (3), 421–436.10.1016/j.pmcj.2013.01.002
  • Wang, E.; Yan, W. iNavigation: An Image Based Indoor Navigation System. Multimedia Tools Appl. 2014, 73 (3), 1597–1615.10.1007/s11042-013-1656-9
  • Zhang, M.; Yao, W.; Meng, L. Enrichment of Topographic Road Database for the Purpose of Routing and Navigation. Int. J. Digital Earth 2014, 7 (5), 411–431.10.1080/17538947.2012.717110
  • van Schaik, P.; Mayouf, M.; Aranyi, G. 3-D Route-Planning Support for Navigation in a Complex Indoor Environment. Behav. Inform. Technol. 2015, 34 (7), 713–724.
  • Carboni, D.; Manchinu, A.; Marotto, V.; Piras, A.; Serra, A. Infrastructure-Free Indoor Navigation: A Case Study. J. Location Based Serv. 2015, 9 (1), 33–54.10.1080/17489725.2015.1027751
  • Lee, J. A Three-Dimensional Navigable Data Model to Support Emergency Response in Microspatial Built-Environments. Ann. Assoc. Am. Geogr. 2007, 97 (3), 512–529.10.1111/j.1467-8306.2007.00561.x
  • Fang, Z.; Li, Q.; Zhang, X.; Shaw, S.-L. A GIS Data Model for Landmark-Based Pedestrian Navigation. Int. J. Geogr. Inform. Sci. 2012, 26 (5), 817–838.10.1080/13658816.2011.615749
  • Garcia Puyol, M.; Robertson, P.; Heirich, O. Complexity Reduced FootSLAM for Indoor Pedestrian Navigation Using a Geographic Tree-Based Data Structure. J. Location Based Serv. 2013, 7 (3), 182–208.10.1080/17489725.2013.819449
  • Kaiser, S.; Khider, M.; Robertson, P. A Pedestrian Navigation System Using a Map-Based Angular Motion Model for Indoor and Outdoor Environments. J. Location Based Serv. 2013, 7 (1), 44–63.10.1080/17489725.2012.698110
  • Karimi, H.A.; Kasemsuppakorn, P. Pedestrian Network Map Generation Approaches and Recommendation. Int. J. Geogr. Inf. Sci. 2013, 27 (5), 947–962.10.1080/13658816.2012.730148
  • Yang, L.; Worboys, M. Generation of Navigation Graphs for Indoor Space. Int. J. Geogr. Inf. Sci. 2015, 29 (10), 1737–1756.10.1080/13658816.2015.1041141
  • Torres-Sospedra, J.; Avariento, J.; Rambla, D.; Montoliu, R.; Casteleyn, S.; Benedito-Bordonau, M.; Gould, M.; Huerta, J. Enhancing Integrated Indoor/Outdoor Mobility in a Smart Campus. Int. J. Geogr. Inf. Sci. 2015, 29 (11), 1955–1968.10.1080/13658816.2015.1049541
  • Li, R.; Korda, A.; Radtke, M.; Schwering, A. Visualising Distant off-Screen Landmarks on Mobile Devices to Support Spatial Orientation. J. Location Based Serv. 2014, 8 (3), 166–178.10.1080/17489725.2014.978825
  • Trapp, M.; Schneider, L.; Lehmann, C.; Holz, N.; Döllner, J. Strategies for Visualising 3D Points-of-Interest on Mobile Devices. J. Location Based Serv. 2011, 5 (2), 79–99.10.1080/17489725.2011.579579
  • Huang, B.; Gao, Y. Ubiquitous Indoor Vision Navigation Using a Smart Device. Geo-Spatial Inf. Sci. 2013, 16 (3), 177–185.10.1080/10095020.2013.817110
  • Pasewaldt, S.; Semmo, A.; Trapp, M.; Döllner, J. Multi-Perspective 3D Panoramas. Int. J. Geogr. Inf. Sci. 2014, 28 (10), 2030–2051.10.1080/13658816.2014.922686
  • Katz, B.F.G.; Kammoun, S.; Parseihian, G.; Gutierrez, O.; Brilhault, A.; Auvray, M.; Truillet, P.; Denis, M.; Thorpe, S.; Jouffrais, C. NAVIG: Augmented Reality Guidance System for the Visually Impaired. Virtual Reality 2012, 16 (4), 253–269.10.1007/s10055-012-0213-6
  • Walker, B.N.; Lindsay, J. Using Virtual Environments to Prototype Auditory Navigation Displays. Assistive Technol. 2005, 17 (1), 72–81.10.1080/10400435.2005.10132097
  • Schroder, C.J.; Mackaness, W.A.; Gittings, B.M. Giving the ‘Right’ Route Directions: The Requirements for Pedestrian Navigation Systems. Trans. GIS 2011, 15 (3), 419–438.10.1111/j.1467-9671.2011.01266.x
  • Hussain, I.; Chen, L.; Mirza, H.T.; Xing, K.; Chen, G. A Comparative Study of Sonification Methods to Represent Distance and Forward-Direction in Pedestrian Navigation. Int. J. Human Comput. Interact. 2014, 30 (9), 740–751.10.1080/10447318.2014.925381
  • Chang, H.H. Which One Helps Tourists Most? Perspectives of International Tourists Using Different Navigation Aids. Tourism Geogr. 2015, 17 (3), 350–369.10.1080/14616688.2015.1016099
  • Jalalian, A.; Chalup, S.K.; Ostwald, M.J. Architectural Evaluation of Simulated Pedestrian Spatial Behaviour. Architectural Sci. Rev. 2011, 54 (2), 132–140.
  • Grierson, L.E.M.; Zelek, J.; Lam, I.; Black, S.E.; Carnahan, H. Application of a Tactile Way-Finding Device to Facilitate Navigation in Persons with Dementia. Assistive Technol. 2011, 23 (2), 108–115.10.1080/10400435.2011.567375
  • Dewali, S.K.; Joshi, J.C.; Ganju, A.; Snehmani, A.. A GPS-Based Real-Time Avalanche Path Warning and Navigation System. Geomat. Nat. Hazard. Risk 2014, 5 (1), 56–80.10.1080/19475705.2012.762429
  • Karimi, H.A.; Asavasuthirakul, D. A Novel Optimal Routing for Navigation Systems/Services Based on Global Navigation Satellite System Quality of Service. J. Intell. Transp. Syst. 2014, 18 (3), 286–298.10.1080/15472450.2013.836927
  • Moafipoor, S. Intelligent Personal Navigator Supported by Knowledge-Based Systems for Estimating Dead Reckoning Navigation Parameters. Doctoral Dissertation, The Ohio State University, 2009.
  • Bojja, J.; Kirkko-Jaakkola, M.; Collin, J.; Takala, J. Indoor Localization Methods Using Dead Reckoning and 3D Map Matching. J. Signal Process. Syst. 2014, 76, 301–312.10.1007/s11265-013-0865-9
  • Hsu, L.-T.; Gu, Y.; Kamijo, S. 3D Building Model-Based Pedestrian Positioning Method Using GPS/GLONASS/QZSS and Its Reliability Calculation. GPS Solut. [Online] 2015. DOI: 10.1007/s10291-015-0451-7. http://link.springer.com/article/10.1007%2Fs10291-015-0451-7
  • Ruotsalainen, L.; Kuusniemi, H.; Bhuiyan, M.Z.H. A Two-Dimensional Pedestrian Navigation Solution Aided with a Visual Gyroscope and a Visual Odometer. GPS Solut. 2013, 17 (4), 575–586.10.1007/s10291-012-0302-8
  • Tomažič, S.; Škrjanc, I. Fusion of Visual Odometry and Inertial Navigation System on a Smartphone. Comput. Ind. 2015, 74, 119–134.10.1016/j.compind.2015.05.003
  • Bancroft, J.B. Multiple Inertial Measurement Unit Fusion for Pedestrian Navigation. Doctoral Dissertation, University of Calgary, 2010.
  • Feng, W.; Zhao, H.; Zhao, Q.; Li, J. Integration of GPS and Low Cost INS for Pedestrian Navigation Aided by Building Layout. Chin. J. Aeronaut. 2013, 26 (5), 1283–1289.10.1016/j.cja.2013.07.027
  • Zampella, F.; Bahillo, A.; Prieto, J.; Jiménez, A.R.; Seco, F. Pedestrian Navigation Fusing Inertial and RSS/TOF Measurements with Adaptive Movement/Measurement Models: Experimental Evaluation and Theoretical Limits. Sens. Actuators A 2013, 203, 249–260.10.1016/j.sna.2013.08.028
  • Mok, E.; Yuen, K.Y. A Study on the Use of Wi-Fi Positioning Technology for Wayfinding in Large Shopping Centers. Asian Geogr. 2013, 30 (1), 55–64.10.1080/10225706.2013.789971
  • Chang, Y.-J.; Wang, T.-Y. Indoor Wayfinding Based on Wireless Sensor Networks for Individuals with Multiple Special Needs. Cybern. Syst. 2010, 41 (4), 317–333.10.1080/01969721003778584
  • Pielot, M.; Boll, S. Tactile Wayfinder: Comparison of Tactile Waypoint Navigation with Commercial Pedestrian Navigation Systems. In Pervasive Computing: Floréen, P., Krüger, A., Spasojevic, M., Eds.; Springer-Verlag: Berlin, 2010; pp 76–93.10.1007/978-3-642-12654-3
  • Dey, A.K. Understanding and Using Context. Personal Ubiquitous Comput. 2001, 5 (1), 4–7.10.1007/s007790170019
  • Schmidt, A.; van Laerhoven, K. How to Build Smart Appliances? IEEE Personal Commun. 2001, 8 (4), 66–71.10.1109/98.944006
  • Barkhuus, L.; Dey, A. Is Context-Aware Computing Taking Control Away from the User? Three Levels of Interactivity Examined. In Proceedings 5th International Symposium on Ubiquitous Computing, Seattle, WA, 2003; pp 149–156.
  • Oulasvirta, A.; Kurvinen, E.; Kankainen, T. Understanding Contexts by Being There: Case Studies in Bodystorming. Personal Ubiquitous Comput. 2003, 7 (2), 125–134.10.1007/s00779-003-0238-7
  • Fernald, J. Sense of Direction: The Director and His Actors; Stein and Day, New York, 1968.
  • Millonig, A.; Schechtner, K. Decision Loads and Route Qualities for Pedestrian Key Requirements for the Design of Pedestrian Navigation Services. In Pedestrian and Evacuation Dynamics; Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M., Eds.; Springer-Verlag: Berlin, 2005; pp 109–118.
  • Treble, P. GPS Leaves Europeans Lost in Space. Maclean’s 2008, 121 (16), 31.
  • Berger, J. Whom Do You Believe, G.P.S. or Your Own Eyes? The New York times 2008, 57 (54223), 1(L).
  • Hart, S.G.; Staveland, L.E. Development of NASA-TLX Task Load Index: Results of Empirical and Theoretical Research. Human Mental Workload 1988, 52 (3), 139–183.10.1016/S0166-4115(08)62386-9
  • Ovstedal, L.; Ryeng, E. Understanding Pedestrian Comfort in European Cities: How to Improve Walking Conditions? In European Transport Conference 2002, Cambridge, UK, September 9−11, 2002.
  • Landis, B.; Vattikuti, V.; Ottenberg, R.; McLeod, D.S.; Guttenplan, M. Modeling the Roadside Walking Environment: Pedestrian Level of Service. Transp. Res. Record J. Transp. Res. Board 2001, 1773, 82–88.10.3141/1773-10
  • Sarkar, S. Qualitative Evaluation of Comfort Needs in Urban Walkways in Major Activity Centers. Transp. Q. 2003, 57 (4), 39–59.
  • Ross, T.; May, A.J.; Grimsley, P.J. Using Traffic Light Information as Navigational Cues: Implications for Navigation System Design. Transp. Res. Part F Traffic Psychol. Behav. 2004, 7 (2), 119–134.10.1016/j.trf.2004.02.004
  • Fickas, S.; Sohlberg, M.; Hung, P.-F. Route-following Assistance for Travelers with Cognitive Impairments: A Comparison of Four Prompt Modes. Int. J. Human Comput. Studies 2008, 66 (12), 876–888.10.1016/j.ijhcs.2008.07.006
  • Montello, D.R. Spatial Cognition. In International Encyclopedia of the Social & Behavioral Sciences: Smelser, N.J. and Baltes, P.B., Eds.; Pergamon Press: Oxford, 2001; pp 14771–14775.
  • Berry, B.J.L. Interdependency of Spatial Structure and Spatial Behavior: A General Field Theory Formulation. Pap. Regional Sci. Assoc. 1968, 21 (1), 205–227.10.1007/BF01952730
  • Spencer, J.P.; Simmering, V.R.; Schutte, A.R. Toward a Formal Theory of Flexible Spatial Behavior: Geometric Category Biases Generalize across Pointing and Verbal Response Types. J. Exp. Psychol. Human Percept. Perform 2006, 32 (2), 473–490.
  • Taylor, H.A.; Brunyé, T.T.; Taylor, S.T. Spatial Mental Representation: Implications for Navigation System Design. Rev. Human Factors Ergon. 2008, 4, 1–40.10.1518/155723408X342835
  • Golledge, R.G.; Rushton, G. Spatial Choice and Spatial Behavior: Geographic Essays on the Analysis of Preferences and Perceptions; Ohio State University Press: Columbus, 1976.
  • Eguia, J.X. 2008. Foundations of Spatial Preferences. http://www.nyu.edu/gsas/dept/politics/faculty/eguia/eguialp08.pdf (accessed Sept 6, 2015).
  • Weinstein Agrawal, A.; Schlossberg, M.; Irvin, K. How Far, by Which Route and Why? A Spatial Analysis of Pedestrian Preference. J. Urban Design 2008, 13 (1), 81–98.10.1080/13574800701804074
  • Pazzaglia, F.; De Beni, R. Strategies of Processing Spatial Information in Survey and Landmark-Centred Individuals. Eur. J. Cognit. Psychol. 2001, 13 (4), 493–508.10.1080/09541440125778
  • Guntrip, H. Personality Structure and Human Interaction: The Developing Synthesis of Psychodynamic Theory; The Hogarth Press: London, 1961.
  • Nardi, B.A. Context and Consciousness: Activity Theory and Human–Computer Interaction; Massachusetts Institute of Technology Press: Boston, 1996.
  • Hollender, N.; Hofmann, C.; Deneke, M.; Schmitz, B. Integrating Cognitive Load Theory and Concepts of Human-Computer Interaction. Comput. Human Behav. 2010, 26 (6), 1278–1288.10.1016/j.chb.2010.05.031
  • Smith, T.E. A Choice Theory of Spatial Interaction. Regional Sci. Urban Econ. 1975, 5 (2), 137–176.10.1016/0166-0462(75)90002-2
  • Stetzer, F.; Phipps, A.G. Spatial Choice Theory and Spatial Indifference: A Comment. Geogr. Anal. 1977, 9 (4), 400–403.
  • Alonso, W. A Theory of Movements. In Human Settlement Systems: International Perspectives on Structure, Change and Public Policy: Hansen, N.M., Ed.; Ballinger: Cambridge, MA, 1978; pp 197–212.
  • Timmermans, H.; Borgers, A. Dynamic Models of Choice Behavior: Some Fundamentals and Trends. In Urban Dynamics and Spatial Choice Behaviour: Hauer, J., Timmermans, H. and Wrigley, N., Eds.; Kluwer Academic Publishers: Dordrecht, 1989; pp 3–26.10.1007/978-94-009-1009-6
  • Prato, C.G. Route Choice Modeling: Past, Present and Future Research Directions. J. Choice Modell. 2009, 2 (1), 65–100.10.1016/S1755-5345(13)70005-8
  • Gaunet, F. Verbal Guidance Rules for a Localized Wayfinding Aid Intended for Blind-Pedestrians in Urban Areas. Univ. Access Inf. Soc. 2006, 4 (4), 338–353.10.1007/s10209-003-0086-2
  • Roger, M.; BonnardeI, N.; Le Bigot, L. Improving Navigation Messages for Mobile Urban Guides: Effects of the Guide’s Interlocutor Model, Spatial Abilities and Use of Landmarks on Route Description. Int. J. Ind. Ergon. 2009, 39 (3), 509–515.10.1016/j.ergon.2008.10.009
  • Huang, H.; Gartner, G. A Survey of Mobile Indoor Navigation Systems. In Cartography in Central and Eastern Europe; Gartner, G. and Ortag, F., Eds.; Springer-Verlag: Berlin, 2009; pp 305–319.10.1007/978-3-642-03294-3
  • Fallah, N.; Apostolopoulos, I.; Bekris, K.; Folmer, E. Indoor Human Navigation Systems: A Survey. Interact. Comput. 2013, 25 (1), 21–33.
  • Retscher, G. Multi-Sensor Systems for Pedestrian Navigation and Guidance Services. In Advances in Mobile Mapping Technology: Tao, C.V. and Li, J., Eds.; Taylor & Francis Group: London, 2007; pp 89–94.
  • Harle, R. A Survey of Indoor Inertial Positioning Systems for Pedestrians. IEEE Commun. Surv. Tutorials 2013, 15 (3), 1281–1293.10.1109/SURV.2012.121912.00075
  • Cao, L.; Yu, P.S. Behavior Computing: Modeling, Analysis, Mining and Decision; Springer-Verlag: London, 2012.10.1007/978-1-4471-2969-1
  • Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments. Ann. Assoc. Am. Geogr. 2015, 105 (3), 512–530.10.1080/00045608.2015.1018773
  • Schmid Mast, M.; Gatica-Perez, D.; Frauendorfer, D.; Nguyen, L.; Choudhury, T. Social Sensing for Psychology: Automated Interpersonal Behavior Assessment. Curr. Direct. Psychol. Sci. 2015, 24 (2), 154–160.10.1177/0963721414560811
  • Large, D.R.; Burnett, G.E. The Effect of Different Navigation Voices on Trust and Attention While Using in-Vehicle Navigation Systems. J. Safety Res. 2014, 49, 69–75.
  • Holland, S.; Morse, D.R.; Gedenryd, H. AudioGPS: Spatial Audio Navigation with a Minimal Attention Interface. Personal Ubiquitous Comput. 2002, 6 (4), 253–259.10.1007/s007790200025
  • Hill, M.R. Spatial Structure and Decision-Making of Pedestrian Route Selection through an Urban Environment. Ph.D. Thesis, University Microfilms International, 1982.
  • Gipps, P.G. Simulation of Pedestrian Traffic in Buildings. Schriftenreihe des Instituts für Verkehrswesen, Institut für Verkehrswesen, Vol. 35, IfV: Karlsruhe, 1987.
  • Teklenburg, J.A.F.; Timmermans, H.J.P.; Borgers, A.W.J. Changes in Urban Layout and Pedestrian Flows. Proc. Sem. a PTRC Eur. Transp. Forum 1993, P363, 97–108.
  • Cheung, C.Y.; Lam, W.H.K. Pedestrian Route Choices between Escalator and Stairway in MTR Stations. J. Transp. Eng. 1998, 124 (3), 277–285.10.1061/(ASCE)0733-947X(1998)124:3(277)
  • Chersi, F.; Pezzulo, G. Using Hippocampal-Striatal Loops for Spatial Navigation and Goal-Directed Decision-Making. Cognit. Process. 2012, 13 (S1), 125–129.10.1007/s10339-012-0475-7
  • Helbing, D.; Molnár, P. Social Force Model for Pedestrian Dynamics. Phys. Rev. E 1995, 51 (5), 4282–4286.10.1103/PhysRevE.51.4282
  • Helbing, D.; Molnár, P.; Farkas, I.J.; Bolay, K. Self-Organizing Pedestrian Movement. Environ. Planning B 2001, 28 (3), 361–383.10.1068/b2697
  • Hoogendoorn, S.P. Pedestrian Route-Choice and Activity Scheduling Theory and Models. Transp. Res. Part B 2004, 38 (2), 169–190.10.1016/S0191-2615(03)00007-9
  • Antonini, G.; Bierlaire, M.; Weber, M. Discrete Choice Models of Pedestrian Walking Behavior. Transp. Res. Part B 2006, 40 (8), 667–687.10.1016/j.trb.2005.09.006
  • Usher, J.M.; Strawderman, L. Simulating Operational Behaviors of Pedestrian Navigation. Comput. Ind. Eng. 2010, 59 (4), 736–747.
  • Zacharias, J. Pedestrian Behavior Pedestrian Behavior and Perception in Urban Walking Environments. J. Planning Literature 2001, 16 (1), 3–18.10.1177/08854120122093249
  • Owen, N.; Cerin, E.; Leslie, E.; duToit, L.; Coffee, N.; Frank, L.D.; Bauman, A.E.; Hugo, G.; Saelens, B.E.; Sallis, J.F. Neighborhood Walkability and the Walking Behavior of Australian Adults. Am. J. Preventive Med. 2007, 33 (5), 387−395.
  • Leslie, E.; Coffee, N.; Frank, L.; Owen, N.; Bauman, A.; Hugo, G.L. Walkability of Local Communities: Using Geographic Information Systems to Objectively Assess Relevant Environmental Attributes. Health Place 2007, 13 (1), 111–122.
  • Coffee, N.T.; Howard, N.; Paquet, C.; Hugo, G.; Daniel, M. Is Walkability Associated with a Lower Cardiometabolic Risk? Health Place 2013, 21, 163–169.
  • Andrews, G.J.; Hall, E.; Evans, B.; Colls, R. Moving beyond Walkability: On the Potential of Health Geography. Social Sci. Med. 2012, 75 (11), 1925–1932.
  • Miller, H.J. Measuring Space-Time Accessibility Benefits within Transportation Networks: Basic Theory and Computational Procedures. Geogr. Anal. 1999, 31 (1), 1–26.
  • Kwan, M.-P. Space-Time and Integrated Measures of Individual Accessibility: A Comparative Analysis Using a Point-Based Framework. Geogr. Anal. 1998, 30 (3), 191–216.
  • Ettema, D.; Timmermans, H. Space-Time Accessibility under Conditions of Uncertain Travel times: Theory and Numerical Simulations. Geogr. Anal. 2007, 39 (2), 217–240.10.1111/gean.2007.39.issue-2
  • Fang, Z.; Tu, W.; Li, Q. A Multi-Objective Approach to Scheduling Joint Participation with Variable Space and Time Preferences and Opportunities. J. Transp. Geogr. 2011, 19 (4), 623–634.10.1016/j.jtrangeo.2010.06.019
  • Neutens, T.; Delafontaine, M.; Scott, D.M.; De Maeyer, P. An Analysis of Day-to-Day Variations in Individual Space-Time Accessibility. J. Transp. Geogr. 2012, 23, 81–91.10.1016/j.jtrangeo.2012.04.001
  • Marschak, J. Rational Behavior, Uncertain Prospects, and Measurable Utility. Econometrica 1950, 18 (2), 111–141.10.2307/1907264
  • Hollink, V.; van Someren, M.; Wielinga, B.J. Navigation Behavior Models for Link Structure Optimization. User Model. User Adapt. Interact. 2007, 17 (4), 339–377.10.1007/s11257-007-9030-0
  • Kozlowski, L.T.; Bryant, K.J. Sense of Direction, Spatial Orientation, and Cognitive Maps. J. Exp. Psychol. Human Percept. Perform. 1977, 3 (4), 590–598.
  • Hering, E. Spatial Sense and Movements of the Eye; American Academy of Optometry: Oxford, 1942.
  • Westheimer, G. The Spatial Sense of the Eye. Invest. Ophthalmol. Visual Sci. 1979, 18 (9), 893–912.
  • Thinus-Blanc, C.; Gaunet, F. Representation of Space in Blind Persons: Vision as a Spatial Sense? Psychol. Bull. 1997, 121 (1), 20–42.10.1037/0033-2909.121.1.20
  • Hart, R.A.; Moore, G.T. The Development of Spatial Cognition: A Review. In Image & Environment: Cognitive Mapping and Spatial Behavior: Downs, R.M. and Stea, D., Eds.; Aldine Transaction: New Brunswick, NJ, 1973; pp 246–288.
  • Herskovits, A. Language and Spatial Cognition; Cambridge University Press: New York, 1987.
  • Couclelis, H.; Golledge, R.G.; Gale, N.; Tobler, W. Exploring the Anchor-Point Hypothesis of Spatial Cognition. J. Environ. Psychol. 1987, 7 (2), 99–122.10.1016/S0272-4944(87)80020-8
  • Halligan, P.W.; Fink, G.R.; Marshall, J.C.; Vallar, G. Spatial Cognition: Evidence from Visual Neglect. Trends Cognit. Sci. 2003, 7 (3), 125–133.10.1016/S1364-6613(03)00032-9
  • Lorenz, A.; Thierbach, C.; Baur, N.; Kolbe, T.H. Map Design Aspects, Route Complexity, or Social Background? Factors Influencing User Satisfaction with Indoor Navigation Maps. Cartogr. Geogr. Inform. Sci. 2013, 40 (3), 201–209.10.1080/15230406.2013.807029
  • Pahlavani, P.; Samadzadegan, F.; Delavar, M.R. A GIS-Based Approach for Urban Multi-Criteria Quasi Optimized Route Guidance by Considering Unspecified Site Satisfaction. In Geographic Information Science-4th International Conference, GIScience 2006, Münster, Germany, September 20–23, 2006; Raubal, M., Miller, H.J., Frank, A.U. and Goodchild, M.F., Eds.; Proceedings, Springer-Verlag: Berlin, 2006; pp 287–303.
  • Rukzio, E.; Müller, M.; Hardy, R. Design, Implementation and Evaluation of a Novel Public Display for Pedestrian Navigation: The Rotating Compass. In CHI’09 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM: New York, 2009; pp 113−122.
  • Lin, P.-C.; Chien, L.-W. The Effects of Gender Differences on Operational Performance and Satisfaction with Car Navigation Systems. Int. J. Human Comput. Studies 2010, 68 (10), 777–787.10.1016/j.ijhcs.2010.06.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.