554
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Towards automating the nautical chart generalization workflow

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &
Received 03 Oct 2023, Accepted 06 Jun 2024, Published online: 19 Jun 2024

References

  • Alexander, L. 2003. In the American Practical Navigator: Electronic Charts, 199–215. Bethesda, MD: National Imaging and Mapping Agency.
  • Beard, M. K. 1991. “Constraints on Rule Formation.” In Map Generalization: Making Rules for Knowledge Representation, edited by B. P. Buttenfield and R. B. McMaster, 121–135. London: Longman Group.
  • Burghardt, D., C. Duchene, and W. Mackaness. 2014. “Abstracting Geographic Information in a Data Rich World. Methodologies and Applications of Map Generalization.” Lecture Notes in Geo-Information and Cartography Subseries, Publications of the International Cartographic Association (ICA).
  • Burghardt, D., S. Schmid, and J. E. Stoter. 2007. “Investigation on Cartographic Constraint Formalization.” Workshop of the ICA Commission on Generalization and Multiple Representation, Moscow.
  • Calder, B., and L. Mayer. 2003. “Automatic Processing of High-Rate, High-Density Multibeam Echosounder Data.” Geochemistry, Geophysics, Geosystems 4 (6): 1048. https://doi.org/10.1029/2002GC000486.
  • Cicek, S., M. Koc, and B. Korukcu. 2022. “Urban Generation in Artist’s Style Using Generative Adversarial Networks (GAN).” The 10th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), Debbieh, Lebanon. 12–14 October 2022.
  • Dias, T., C. Monteiro, A. Moura, J. David, P. Cabral, and F. S. Campos. 2022. “Detection of Discrepancies Between Nautical Charts and New Survey Data Using GIS Techniques.” Cartography and Geographic Information Science 50 (2): 130–142. https://doi.org/10.1080/15230406.2022.2130823.
  • Douglas, D. H., and T. K. Peucker. 1973. “Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature.” Cartographica: The International Journal for Geographic Information and Geovisualization 10 (2): 112–122. https://doi.org/10.3138/FM57-6770-U75U-7727.
  • Duchêne, C., G. Touya, P. Taillandier, J. Gaffuri, A. Ruas, and J. Renard. 2018. “Multi-Agents Systems for Cartographic Generalization: Feedback from Past and On-Going Research.” [Research Report]. IGN (Institut National de l’Information Géographique et Forestière); LaSTIG, équipe COGIT.
  • Dyer, N., C. Kastrisios, and L. De Floriani. 2022. “Label-Based Generalization of Bathymetry Data for Hydrographic Sounding Selection.” Cartography and Geographic Information Science 49 (4): 338–353. https://doi.org/10.1080/15230406.2021.2014974.
  • Dyer, N., C. Kastrisios, and L. De Floriani. 2023. “Chart Features, Data Quality, and Scale in Cartographic Sounding Selection from Composite Bathymetric Data.” Geo-Spatial Information Science 1–26. https://doi.org/10.1080/10095020.2023.2266222.
  • Ence, C. 2018. “Developing Rasterization Procedure for Vector Chart Data.” University of Maryland – GEOG 797, Spring 2018.
  • Esri. 2021. ArcGIS Pro (version 3.1.0). “Getting Started with Topographic Production Generalization.” Topographic Generalization Model Documentation by Esri.
  • Esri. 2023. ArcGIS Pro (version 3.1.0). ”Production Mapping - Automated Generalization.” Accessed August, 2023. https://www.esri.com/en-us/arcgis/products/arcgis-production-mapping/overview#automated-generalization.
  • Foerster, T., J. Stoter, and M. J. Kraak. 2013. “Challenges for Automated Generalization at European Mapping Agencies: A Qualitative and Quantitative Analysis.” The Cartographic Journal 47 (1): 41–54. July 2013. https://doi.org/10.1179/000870409X12525737905123.
  • Gaffuri, J. 2007. “Field Deformation in an Agent-Based Generalization Model: The GAEL Model.” GI Days 30: 1–24.
  • Galanda, M., and R. Weibel. 2002. “An Agent-Based Framework for Polygonal Subdivision Generalization.” In Advances in Spatial Data Handling, edited by D. E. Richardson and P. van Oosterom. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-56094-1_10.
  • Guilbert, E., and X. Zhang. 2012. Generalization of Submarine Features on Nautical Charts. XXII ISPRS Congress, 25 August–01 September 2012, Melbourne, Australia.
  • Hippmann, F. 2012. “Production and Validation Solutions for Improving ENC Consistency.” L-3, Nautronix. TSMAD 23 – January 2012.
  • Huo, X., C. Zhou, Y. Xu, and M. Li. 2022. “A Methodology for Balancing the Preservation of Area, Shape, and Topological Properties in Polygon-To-Raster Conversion.” Cartography and Geographic Information Science 49 (2): 115–133. https://doi.org/10.1080/15230406.2021.1991478.
  • IC-ENC. 2022. “IC-ENC S-57 Catalogue.” Accessed September 30, 2023. https://www.ic-enc.org/our-coverage.
  • IHO. 2017. ENC Production, Maintenance and Distributing Guidance (S-65). Ed 2.1.0. Monaco: International Hydrographic Organization.
  • IHO. 2018. ENC Validation Checks (S-58). Ed 6.1.0. Monaco: International Hydrographic Organization.
  • IHO. 2020. ENC Product Specification (S-57 Appendix B.1-Annex A: Use of Object Catalogue for ENC). Ed 4.2.0. Monaco: International Hydrographic Organization.
  • IHO. 2021. Regulations of the IHO for International (INT) Charts and Chart Specifications of the IHO. (S-4). Ed 4.9.0. Monaco: International Hydrographic Organization.
  • Jonas, M., and J. Melles. 2003. “Study on ENC Loading Strategy in Relation to SCAMIN Effects and Over-Scale Indications.” International Hydrographic Review 4 (2): 41–56.
  • Kastrisios, C., and B. Calder. 2018. “Algorithmic Implementation of the Triangle Test for the Validation of Charted Soundings.” Proceedings of the 7th International Conference on Cartography and GIS, 569–576. Sozopol, Bulgaria. 18–23 June 2018.
  • Kastrisios, C., B. Calder, and M. Bartlett. 2020. “Inspection and Error Remediation of Bathymetric Relationship of Adjoining Geo-Objects in Electronic Navigation Charts.” 8th International Conference on Cartography and GIS.” Vol.1 Nessebar, Bulgaria.
  • Kastrisios, C., B. Calder, G. Masetti, and P. Holmberg. 2019a. “On the Effective Validation of Charted Soundings and Depth Curves.” 2019 US Hydro Conference, Biloxi, MS, USA. 19–21 March 2019. https://doi.org/10.13140/RG.2.2.18705.89440.
  • Kastrisios, C., B. Calder, G. Masetti, and P. Holmberg. 2019b. “Towards Automated Validation of Charted Soundings: Existing Tests and Limitations.” Geo-Spatial Information Science 22 (4): 290–303. https://doi.org/10.1080/10095020.2019.1618636.
  • Kastrisios, C., N. Dyer, T. Nada, S. Contarinis, and J. Cordero. 2023. “Increasing Efficiency of Nautical Chart Production and Accessibility to Marine Environment Data Through an Open-Science Compilation Workflow.” ISPRS International Journal of Geo-Information 2023:12. https://doi.org/10.3390/ijgi12030116.
  • Kastrisios, C., and M. Pilikou. 2017. “Nautical Cartography Competences and Their Effect to the Realization of a Worldwide Official ENC Database, the Performance of ECDIS and the Fulfilment of IMO Chart Carriage Requirement.” Marine Policy 75:29–40. https://doi.org/10.1016/j.marpol.2016.10.007.
  • Käuferle, D., and M. Wigley. 2021. “Change Only Updating the 1: 25 000 Swiss National Map.” 30th International Cartographic Conference (ICC 2021), Florence, Italy. 14–18 December 2021. https://doi.org/10.5194/ica-abs-3-141-2021.
  • Lamy, S., A. Ruas, Y. Demazeau, M. Jackson, and W. A. Mackaness. 1999. “The Application of Agents in Automated Map Generalizations.”The 19th International Cartographic Conference, Ottawa, Aug 14–21.
  • Lecordix, F., J. Gallic, L. Gondol, and A. Braun. 2007. “Development of a New Generalization Flowline for Topographic Maps.” 10th ICA workshop on Generalization and Multiple Representation, Moscow, August 2–3.
  • Lovrinčević, D. 2019. “The Development of a New Methodology for Automated Sounding Selection on Nautical Charts.” Nase More 66 (2): 70–77. https://doi.org/10.17818/NM/2019/2.4.
  • Mackaness, W. A., A. Ruas, and L. Sarjakoski. 2007. Generalization of Geographic Information; Cartographic Modeling and Applications. Amsterdam; Boston: International Cartographic Association by Elsevier. https://doi.org/10.1016/B978-0-08-045374-3.X5000-5
  • Maudet, A., G. Touya, C. Duchêne, and S. Picault. 2014. “Representation of Interactions in a Multi-Level Multi-Agent Model for Cartography Constraint Solving.” In Advances in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection. PAAMS 2014. Lecture Notes in Computer Science, edited by Y. Demazeau, F. Zambonelli, J. M. Corchado, and J. Bajo, Vol. 8473. Cham: Springer. https://doi.org/10.1007/978-3-319-07551-8_16.
  • Miao, D., and B. Calder. 2013. “Gradual Generalization of Nautical Chart Contours with a Cubic B-Spline Snake Model.” IEEE OCEANS - San Diego (2013), 1–7. https://doi.org/10.23919/OCEANS.2013.6741201.
  • Nada, T., C. Kastrisios, B. Calder, E. Christie, C. Greene, and A. Bethell. 2023a. “An Automated Nautical Chart Generalization Model.” US Hydro: Mobile, AL, USA, March 13–16, 2023.
  • Nada, T., C. Kastrisios, B. Calder, E. Christie, C. Greene, and A. Bethell. 2023b. “Automated Chart Compilation and Verification of Output Topology and Safety.” 31stInternational Cartographic Conference. International Cartographic Association (ICA), Cape Town, South Africa, August 13–18. https://doi.org/10.5194/ica-proc-5-14-2023.
  • Nada, T., C. Kastrisios, B. Calder, E. Christie, C. Greene, A. Bethell, and H. Madhu. 2022. “The Nautical Cartographic Constraints and an Automated Generalization Model.” Canadian Hydrographic Conference, Ottawa, Canada, June 6–9.
  • NOAA. 2019a. “Nautical Chart Manual, Volume One, Policies and Procedures.” (Version 2019.1), Office of Coast Survey. https://repository.library.noaa.gov/view/noaa/49956/noaa_49956_DS1.pdf.
  • NOAA. 2019b. “Transforming the NOAA ENC - Implementing the National Charting Plan.” November 7, 2019. https://www.nauticalcharts.noaa.gov/publications/docs/nautical-charting-plan.pdf.
  • NOAA. 2023. “Status of New NOAA ENCs.” Accessed March 20, 2023. https://distribution.charts.noaa.gov/ENC/rescheme/.
  • Owens, E., and R. Brennan. 2012. “Methods to Influence Precise Automated Sounding Selection via Sounding Attribution and Depth Areas.” Canadian Hydrographic Conference, Niagara Falls, ON, Canada, May 15–17.
  • Peters, R., H. Ledoux, and M. Meijers. 2014. “A Voronoi-Based Approach to Generating Depth-Contours for Hydrographic Charts.” Marine Geodesy 37 (2): 145–166. https://doi.org/10.1080/01490419.2014.902882.
  • Regnauld, N. 2011. “OS Vectormap District: Automated Generalization, Text Placement and Conflation in Support of Making Public Data Public.” 25th International Cartographic Conference, Paris, France, July 3–8.
  • Ross, K. 2009. “Ladder versus Star: Comparing Two Approaches for Generalizing Hydrologic Flowline Data Across Multiple Scales.” Paper for Seminar in Cartography, Multiscale Hydrography GEOG 512: USA: Department of Geography, Pennsylvania State University.
  • Ruas, A. 1999. “Modèle de généralisation de données géographiques à base de contraintes et d’autonomie.” PhD thesis, Université Marne La Vallée.
  • Ruas, A., and C. Plazanet. 1997. “Strategies for Automated Generalization, Advances in GIS Research II.” Proceedings of the 7th International Symposium on Spatial Data Handling, London, UK.
  • Sabo, M. N., Y. Bédard, B. Moulin, and E. Bernier. 2008. “Toward Self-Generalizing Objects and On-The-Fly Map Generalization.” Cartographica: The International Journal for Geographic Information and Geovisualization 43 (3): 155–173. https://doi.org/10.3138/carto.43.3.155.
  • Shea, K., and B. McMaster. 1989. “Cartographic Generalization in a Digital Environment: When and How to Generalize.” Computer Science, Geography: 56–67.
  • Skopeliti, A., L. Stamou, L. Tsoulos, and S. Pe’eri. 2020. “Generalization of Soundings Across Scales: From DTM to Harbour and Approach Nautical Charts.”ISPRS International Journal of Geo-Information 9 (11): 9–11. https://doi.org/10.3390/ijgi9110693.
  • Skopeliti, A., L. Tsoulos, and S. Pe’eri. 2021. “Depth Contours and Coastline Generalization for Harbour and Approach Nautical Charts.” ISPRS International Journal of Geo-Information 10 (4): 197. https://doi.org/10.3390/ijgi10040197.
  • Socha, W., and J. E. Stoter. 2013. “First Attempts to Automatize Generalization of Electronic Navigational Charts – Specifying Requirements and Methods.” 16th ICA Workshop on Generalization and Map Production, Dresden, Germany, August 23–24.
  • Stoter, J. E., V. Altenaa, M. Posta, M. Burghardt, and C. Duchêned. 2016. “Automated Generalization within NMAs in 2016.” In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 647–652. Prague, Czech Republic. July 12–19. https://doi.org/10.5194/isprs-archives-XLI-B4-647-2016.
  • Stoter, J. E., J. Van Smaalen, N. Bakker, and P. Hardy. 2009. “Specifying Map Requirements for Automated Generalization of Topographic Data.” The Cartographic Journal 46 (3): 214–227. https://doi.org/10.1179/174327709X446637.
  • Sui, H., X. Zhu, and A. Zhang. 2005. “A System for Fast Cartographic Sounding Selection.” Marine Geodesy 28 (2): 159–165. https://doi.org/10.1080/01490410590953695.
  • Touya, G., I. Lokhat, and C. Duchene. 2019. “CartAgen: An Open Source Research Platform for Map Generalization.” International Cartographic Conference, 1–9. Tokyo, Japan. July 2019. https://doi.org/10.5194/ica-proc-2-134-2019.
  • Wang, Z., and J. C. Muller. 2013. “Line Generalization Based on Analysis of Shape Characteristics.” Cartography and Geographic Information Systems 25 (1): 3–15. https://doi.org/10.1559/152304098782441750.
  • Wilson, M., G. Masetti, and B. Calder. 2017. “Automated Tools to Improve the Ping-To-Chart Workflow.” International Hydrographic Review 17:21–30.
  • Yan, J., E. Guilbert, and E. Saux. 2016. “An Ontology-Driven Multi-Agent System for Nautical Chart Generalization.” Cartography and Geographic Information Science 44 (3): 201–215. https://doi.org/10.1080/15230406.2015.1129648.
  • Yu, W. 2018. “Automatic Sounding Generalization in Nautical Chart Considering Bathymetry Complexity Variations.” Marine Geodesy 41 (1): 68–85. https://doi.org/10.1080/01490419.2017.1393476.
  • Zhang, X., and E. Guilbert. 2011. “A Multi-Agent System Approach for Feature-Driven Generalization of Isobathymetric Line.” In Advances in Cartography and GIScience, 477–495. Vol. 1. Springer. https://doi.org/10.1007/978-3-642-19143-5_27.