512
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods

, , ORCID Icon, & ORCID Icon
Pages 1069-1089 | Received 12 Jan 2016, Accepted 04 May 2016, Published online: 07 Jun 2016

References

  • Adiat KAN , Nawawi MNM , Abdullah K . 2012. Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool - a case of predicting potential zones of sustainable groundwater resources. J Hydrol. 440:75–89.
  • Aertsen W , Kint V , Van Orshoven J , Özkan K , Muys B . 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model. 221:1119–1130.10.1016/j.ecolmodel.2010.01.007
  • Aniya M . 1985. Landslide-susceptibility mapping in the amahata river basin, Japan. Ann Assoc Am Geogr. 75:102–114.10.1111/j.1467-8306.1985.tb00061.x
  • Armas I . 2012. Weights of evidence method for landslides susceptibility mapping, Prahova Subcarpathians, Romania. Nat Hazards. 60:937–950.10.1007/s11069-011-9879-4
  • Beven KJ , Kirkby MJ. 1979. Physically based, variable contributing area model of basin hydrology. Hydrolog Sci J. 24:43e69.
  • Bonham-Carter GF . 1994. Geographic information systems for geoscientists: modeling with GIS, 398 p. Ontario: Pergamon.
  • Brenning A. 2008. Statistical Geocomputing combining R and SAGA: the example of landslide susceptibility analysis with generalized additive models. SAGA-Seconds Out, Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie 19: 23–32. Germany.
  • Brydsten L. 2006. Modelling groundwater discharge areas using only digital elevation models as input data. Umea University, Technical Report TR-06-39.
  • Canli E , Thiebes B , Petschko H , Glade T. 2015. Comparing physically-based and statistical landslide susceptibility model outputs – a case study from Lower Austria. Geophys Res Abstracts. 17: EGU2015-224-3.
  • Carranza EJM , Hale M . 2003. Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geol Rev. 22:117–132.10.1016/S0169-1368(02)00111-7
  • Chang TC , Chao RJ . 2006. Application of back-propagation networks in debris flow prediction. Eng. Geo. 85:270–280.
  • Chang TC , Chien YH . 2007. The application of genetic algorithm in debris flows prediction. Environ Geol. 53:339–347.10.1007/s00254-007-0649-2
  • Chen W , Li W . 2014. Application of Weights-of-Evidence Model in Landslide Susceptibility Mapping at Baozhong Region in Baoji. Bund D. 19:791–810. China, EJGE.
  • Chowdhury A , Jha MK , Chowdary VM , Mal BC . 2009. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int J Remote Sens. 30:231–250.10.1080/01431160802270131
  • Corsini A , Cervi F , Ronchetti F . 2009. Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology. 111:79–87.
  • Delfan B , Bahmani M , Golshahi H , Saki K , Rafieian-Kopaei M , Baharvand-Ahmadi B . 2015. Ethnobotanical identification of medicinal plants effective on bloat in Lorestan province, west of Iran. JCPS. 8:667–671.
  • DGL. 2012. Department of Governorship of Lorestan. Report of Lorestan Land of Culture and Civilization Address site. [cited 2015 Apr].
  • Duke C , Steele J . 2010. Geology and lithic procurement in Upper Palaeolithic Europe: a weights-of-evidence based GIS model of lithic resource potential. J Archaeol Sci. 37:813–824.10.1016/j.jas.2009.11.011
  • Egan JP. 1975. Signal detection theory and ROC analysis. New York, NY : Academic press.
  • Elith J , Leathwick JR , Hastie T . 2008. A working guide to boosted regression trees. J Anim Ecol. 77:802–813.10.1111/j.1365-2656.2008.01390.x
  • Elmahdy SI , Mohamed MM. 2013. Relationship between geological structures and groundwater flow and groundwater salinity in Al-Jaaw plain, United Arab emirates, mapping and analysis by means of remote sensing and GIS. Arab J Geosci. 1249–1259.
  • Elmahdy SI , Mohamed MM . 2015a. Remote sensing and geophysical survey applications for delineating near surface paleochannels and shallow aquifer in the United Arab Emirates, Geocarto International. Geocarto Int. 30:723–736. doi:10.1080/10106049.2014.997306
  • Elmahdy SI , Mohamed MM . 2015b. Groundwater of Abu Dhabi Emirate: a regional assessment by means of remote sensing and geographic information system. Arab J Geosci. 8:11279–11292.10.1007/s12517-015-1932-2
  • Elmahdy SI , Mohamed MM . 2016. Mapping of tecto-lineaments and investigate their association with earthquakes in Egypt: a hybrid approach using remote sensing data. Geomatics, Natural Hazards and Risk. 7:600–619. doi:10.1080/19475705.2014.996612
  • Fernández DS , Lutz MA . 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol. 111:90–98.10.1016/j.enggeo.2009.12.006
  • Foster SSD , Chilton PJ . 2003. Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc London, B. 358:1957–1972.10.1098/rstb.2003.1380
  • Friedman JH , Meulman JJ . 2003. Multiple additive regression trees with application in epidemiology. Stat Med. 22:1365–1381.10.1002/(ISSN)1097-0258
  • Ganapuram S , Kumar GTV , Krishna IVM , Kahya E , Demirel MC . 2009. Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Adv Eng Softw. 40:506–518.10.1016/j.advengsoft.2008.10.001
  • Ghorbani Nejad S , Falah F , Daneshfar M , Haghizadeh A , Rahmati O . 2015. Delineation of groundwater potential zones using remote sensing and GIS-based data driven models. Geocarto International. doi:10.1080/10106049.2015.1132481
  • Goetz JN , Guthrie RH , Brenning A . 2011. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology. 129:376–386.10.1016/j.geomorph.2011.03.001
  • Greenbaum D . 1989. Hydrogeological applications of remote sensing in areas of crystalline basement. Paper presented at: The Groundwater Exploration and Development in Crystalline Basement Aquifers, Zimbabwe.
  • Guisan A , Edwards TC Jr. , Hastie. TC . 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model. 157:89–100.10.1016/S0304-3800(02)00204-1
  • Gutiérrez ÁG , Schnabel S , Felicisimo AM . 2009. Modelling the occurrence of gullies in rangelands of southwest Spain. Earth Surf Process Landf. 34:1894–1902.10.1002/esp.v34:14
  • Hanley JA , McNeil BJ . 1983. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 148:839–843.10.1148/radiology.148.3.6878708
  • Hashemi M , Imani Rad H . 2015. Investigation the Quantitative and Qualitative Situation of Water Resources in Karstic Formations in Azna City. Advances in Environmental Biology. 9:443–445.
  • Hastie TJ , Tibshirani R . 1990. Generalized additive models. London: Chapman & Hall/CRC.
  • Heath, R.C. , 1983, Basic ground-water hydrology. U.S. Geological Survey Water-Supply Paper 2220; 86 p.
  • Iranian Department of Water Resource Management (IDWRM) 2012. Report of natural resources management. Available from: http://portal.wrm.ir/ (Accessed in 2015)
  • Jaiswal RK , Mukherjee S , Krishnamurthy J , Saxena R . 2003. Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development – an approach. Int J Remote Sens. 24:993–1008.10.1080/01431160210144543
  • Kaliraj S , Chandrasekar N , Magesh NS . 2014. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci. 7:1385–1401.10.1007/s12517-013-0849-x
  • Kanevski M , Pozdnoukhov A , Timonin V . 2009. Machine learning for spatial environmental data: theory, applications and software; 368 pp. Lausanne: EPFL Press.10.1201/9781439808085
  • Kumar PKD , Gopinath G , Seralathan P . 2007. Application of remote sensing and GIS for demarcation of ground water potential zones of a river basin in Kerala, southwest coast of India. Int J Remote Sens. 28:5583–5601.10.1080/01431160601086050
  • Lee S , Pradhan B . 2006. Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Earth Sys Sci. 115:661–672.10.1007/s12040-006-0004-0
  • Lee S , Talib JA . 2005. Probabilistic landslide susceptibility and factor effect analysis. Environ Geol. 47:982–990.10.1007/s00254-005-1228-z
  • Lee S , Ryu JH , Kim IS . 2007. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides. 4:327–338.10.1007/s10346-007-0088-x
  • Liu H . 2008. Generalized additive model. Duluth, MN: Department of Mathematics and Statistics University of Minnesota Duluth 55812.
  • Liu Y , Guo HC , Zou R , Wang J . 2006. Neural network modelling for regional hazard assessment of debris flow in Lake Qionghai Watershed, China. Environ Geol. 49:968–976.10.1007/s00254-005-0135-7
  • Lorestan Reginal Water Authority (LRWA) 2016, Annual report. Available from: http://www.lsrw.ir/ (Accessed in 2016)
  • Magesh NS , Chandrasekar N , Soundranayagam JP . 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front. 3:189–196.10.1016/j.gsf.2011.10.007
  • Manap MA , Sulaiman WNA , Ramli MF , Pradhan B , Surip N . 2013. A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arab J Geosci. 6:1621–1637.10.1007/s12517-011-0469-2
  • Mogaji KA , Lim HS , Abdullah K . 2014. Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster-Shafer model. Arab J Geosci. doi:10.1007/s12517-014-1391-1
  • Moghaddam D , Rezaei M , Pourghasemi HR , Pourtaghie ZS , Pradhan B . 2015. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan Watershed, Iran. Arab J Geosci. 8:913–929.10.1007/s12517-013-1161-5
  • Mohajjel M , Fergusson CL . 2000. Dexteral Transpression in late Cretaceous Continental Collision, Sanandaj-Sirjan Zone, Western Iran. J Struct Geol. 22:1125–1139.10.1016/S0191-8141(00)00023-7
  • Mohammady M , Pourghasemi HR , Pradhan B . 2012. Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of evidence models. J Asian Earth Sci. 61:221–236.10.1016/j.jseaes.2012.10.005
  • Moore ID , Grayson RB , Ladson AR . 1991. Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydrol Process. 5:3–30.10.1002/(ISSN)1099-1085
  • Mwega, WB , Bancy MM , Mulwa JK , Kituu GM . 2013. Identification of Groundwater Potential Zones using Remote Sensing and GIS in Lake Chala Watershed, Kenya, Proceedings of 2013 Mechanical Engineering Conference on Sustainable Research and Innovation; 2013 Apr 24–26 5.
  • Naghibi SA , Pourghasemi HA . 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour Manage. 29:5217–5236.10.1007/s11269-015-1114-8
  • Naghibi SA , Pourghasemi HR , Pourtaghi ZS , Rezaei A . 2015. Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan Watershed, Iran. Earth Sci Inform. 8:171–186.10.1007/s12145-014-0145-7
  • Naghibi SA , Pourghasemi HR , Dixon B . 2016. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess. 188:44.10.1007/s10661-015-5049-6
  • Nampak H , Pradhan B , Manap MA . 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol. 513:283–300.10.1016/j.jhydrol.2014.02.053
  • National Geographic Almanac of Geography . 2005. ISBN 0-7922-3877-X; p. 148.
  • Negnevitsky M .2002. Artificial intelligence: a guide to intelligent systems; p. 394. Harlow: Addison–Wesley/Pearson.
  • Neshat A , Pradhan B , Pirasteh S , Shafri HZM . 2014. Estimating groundwater vulnerability to pollution using modified DRASTIC model in the Kerman agricultural area Iran. Environ Earth Sci. 71:3119–3131.
  • Nolan BT , Healy RW , Taber PE , Perkins K , Hitt KJ , Wolock DM . 2007. Factors influencing ground-water recharge in the eastern United States. J Hydrol. 332:187e205.
  • Oh HJ , Kim YS , Choi JK , Park E , Lee S . 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol. 399:158–172.10.1016/j.jhydrol.2010.12.027
  • Olden, JD , Lawler, JJ , LeRoy Poff. N. 2008. Machine learning methods without tears: a Primwe for ecologists. Q Rev Biol. 832:93–171.
  • Oliveira S , Oehler F , San-Miguel-Ayanz J . 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europeusing Multiple Regression and Random Forest. Forest Ecol Manag. 275:117–129.10.1016/j.foreco.2012.03.003
  • Ozdemir A . 2011a. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol. 405:123–136.10.1016/j.jhydrol.2011.05.015
  • Ozdemir A . 2011b. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol. 411:290–308.10.1016/j.jhydrol.2011.10.010
  • Ozdemir A , Altural T . 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J Asian Earth Sci. 64:180–197.10.1016/j.jseaes.2012.12.014
  • Park NW , Chi KH . 2008. Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model. Int J Remote Sens. 29:247–264.10.1080/01431160701227661
  • Pourghasemi HR , Beheshtirad M . 2015. Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto Int. 30:662–685.10.1080/10106049.2014.966161
  • Pourghasemi HR , Pradhan B , Gokceoglu C , Mohammadi M , Moradi HR . 2012. Application of weights-of evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed. Iran Arab J Geosci. 6:2351–2365.
  • Pourtaghi ZS , Pourghasemi HR . 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province Iran. Hydrogeol J. 22:643–662.10.1007/s10040-013-1089-6
  • Rahmati O , Nazari Samani A , Mahdavi M , Pourghasemi H , Zeinivand H . 2014. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 8:7059–7071.
  • Rahmati O , Samani A , Mahmoodi N , Mahdavi M . 2015. Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in Western Iran (case study: Ghorveh–Dehgelan Aquifer). Water Qual Expo Health. 7:143–151.10.1007/s12403-014-0135-5
  • Rahmati O , Pourghasemi HR , Melesse AM . 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. Catena. 137:360–372.10.1016/j.catena.2015.10.010
  • Rahmati O , Pourghasemi HR , Zeinivand H . 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International. 31:42–70.10.1080/10106049.2015.1041559
  • Razandi Y , Pourghasemi H , Samani Neisani N , Rahmati O . 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inform. 29:5217–5236.
  • Regmi AD , Devkota KC , Yoshida K , Pradhan B , Pourghasemi HR , Kumamoto T , Akgun A . 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci. 7:725–742.10.1007/s12517-012-0807-z
  • Romero-Calcerrada R , Novillo CJ , Millington J.D.A , Gomez-Jimenez I. 2008. GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecol. 23:341–354.10.1007/s10980-008-9190-2
  • Sedhuraman M , Revathy SS , Suresh Babu S. 2014. Integration of Geology and Geomorphology for Groundwater Assessment using Remote Sensing and GIS Techniques. International Journal of Innovative Research in Science, Engineering and Technology. 3:10203–10211.
  • Shamsi A , Kazemi G. 2014. A review of research dealing with isotope hydrology in Iran and the first Iranian meteoric water line. J Geope 4:73–86.
  • Shekhar S , Pandey AC . 2015. Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int. 30:402–421.10.1080/10106049.2014.894584
  • Siangphoe U , Wheeler DC . 2015. Evaluation of the performance of smoothing functions in generalized additive models for spatial variation in disease. Cancer Informatics. 14:107–116.
  • Sidle RC , Ochiai H. 2006. Landslides: processes, prediction, and landuse. American Geophysical Union, Washington, DC. Water Res Monograph, 18; p 312.
  • Statistical Center of Iran (SCI) 2012. Lorestan population report. [cited 2015 June 25]. Available from: http://www.amar.org.ir/
  • Stumpf A , Kerle N . 2011. Object-oriented mapping of landslides using Random Forests. Remote Sens Environ. 115:2564–2577.10.1016/j.rse.2011.05.013
  • Surrette M , Allen D , Journeay M . 2008. Regional evaluation of hydraulic properties in variably fractured rock using a hydrostructural domain approach. Hydrogeol J. 16:11–30.10.1007/s10040-007-0206-9
  • Swets JA . 1988. Measuring the accuracy of diagnostic systems. Science. 240:1285–1293.10.1126/science.3287615
  • Tahmassebipoor N , Rahmati O , Noormohamadi F , Lee S . 2016. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci. 9:79. doi:10.1007/s12517-015-2166-z
  • Tehrany MS , Pradhan B , Jebur MN . 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol. 512:332–343. doi:10.1016/j.jhydrol.2014.03.008
  • Van Den Eeckhaut M , Hervás J , Jaedicke C , Malet JP , Montanarella L , Nadim F . 2012. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides. 9:357–369.10.1007/s10346-011-0299-z
  • Van Westen CJ , Rengers N , Terlien MTJ , Soeters R . 1997. Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation. Geol Rundsch. 86:404–414.10.1007/s005310050149
  • Vieira V , Webster T , Weinberg J , Aschengrau A , Ozonoff D . 2005. Spatial analysis of lung, colorectal, and breast cancer on Cape Cod: an application of generalized additive models to case-control data. Environ Health. 4:11.10.1186/1476-069X-4-11
  • Vijith H , Madhu G . 2008. Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol. 55:1397–1405.10.1007/s00254-007-1090-2
  • Webster T , Vieira V , Weinberg J , Aschengrau A . 2006. Method for mapping population-based case-control studies: an application using generalized additive models. Int J Health Geogr. 5:26. doi:10.1186/1476-072X-5-26 10.1186/1476-072X-5-26
  • Winter TC , Harvey JW , Franke OL , Alley WM. 1999. Ground Water and Surface Water, a Single Resource. U.S. Geological Survey Circular 1139; 79 p.
  • Xu C , Xu X , Dai F , Xiao J , Tan X , Yuan R . 2012. Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake struck region. J Earth Sci. 23:97–120.10.1007/s12583-012-0236-7
  • Yalcin A , Reis S , Aydinoglu AC , Yomralioglu T . 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena. 85:274–287.10.1016/j.catena.2011.01.014
  • Yeh HF , Lee CH , Hsu KC , Chang PH . 2009. GIS for the assessment of the groundwater recharge potential zone. Environ Geol. 58:185–195.10.1007/s00254-008-1504-9
  • Yesilnacar EK . 2005. The application of computational intelligence to landslide susceptibilitymapping in Turkey [ PhD Thesis]. Victoria: Department of Geomatics the University of Melbourne, 423 p.
  • Yesilnacar E , Topal T . 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol. 79:251–266.10.1016/j.enggeo.2005.02.002
  • Yilmaz I . 2007. GIS based susceptibility mapping of karst depression in gypsum: a case study from Sivas basin (Turkey). Eng Geol. 90:89–103.10.1016/j.enggeo.2006.12.004
  • Yilmaz I . 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci. 61:21–836.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.