828
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes

ORCID Icon, , & ORCID Icon
Pages 886-899 | Received 26 Jan 2016, Accepted 04 May 2016, Published online: 02 Jun 2016

References

  • Abegunde L, Adedeji O. 2015. Impact of landuse change on surface temperature in Ibadan, Nigeria. Int J Environ Ecol Geol Geophys Eng. 9:235–241.
  • Adelabu S, Mutanga O, Adam E, Cho MA. 2013. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image. J Appl Remote Sens. 7:073480.
  • Aplin P. 2003. Comparison of simulated IKONOS and SPOT HRV imagery for classifying urban areas. In: Mesev, editor. Remotely sensed cities. London: Taylor and Francis; p. 23–45.
  • Chen X-L, Zhao H-M, Li P-X, Yin Z-Y. 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ. 104:133–146.10.1016/j.rse.2005.11.016
  • De Fries RS, Hansen M, Townshend JRG, Sohlberg R. 1998. Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. Int J Remote Sens. 19:3141–3168.10.1080/014311698214235
  • Deng C, Wu C. 2013. Examining the impacts of urban biophysical compositions on surface urban heat island: a spectral unmixing and thermal mixing approach. Remote Sens Environ. 131:262–274.10.1016/j.rse.2012.12.020
  • Dube T, Gumindoga W, Chawira M. 2014a. Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques. Afr J Aquat Sci. 30:80–95.
  • Dube T, Gumindoga W, Chawira M. 2014b. Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques. Afr J Aquat Sci. 39:89–95.10.2989/16085914.2013.870068
  • Dube T, Mutanga O. 2015a. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J Photogramm Remote Sens. 101:36–46.10.1016/j.isprsjprs.2014.11.001
  • Dube T, Mutanga O. 2015b. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J Photogramm Remote Sens. 108:12–32.10.1016/j.isprsjprs.2015.06.002
  • Dube T, Mutanga O. 2015c. Quantifying the variability and allocation patterns of aboveground carbon stocks across plantation forest types, structural attributes and age in sub-tropical coastal region of KwaZulu Natal, South Africa using remote sensing. Appl Geogr. 64:55–65.10.1016/j.apgeog.2015.09.003
  • Foody GM. 1996. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int J Remote Sens. 17:1317–1340.10.1080/01431169608948706
  • Forkuor G, Cofie O. 2011. Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture – a remote sensing approach. Int J Remote Sens. 32:1017–1037.10.1080/01431160903505302
  • Genc L, Inalpulat M, Kizil U, Aksu S. 2014. Determination of paddy rice field using Landsat 8 images. Paper presented at: The International Conference on Biological, Civil and Environmental Engineering; Dubai, UAE.
  • Hashem N, Balakrishnan P. 2014. Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar. Ann GIS. 21:233–247.
  • Hua L, Man W, Wang Q, Zhao X. 2013. A new decision tree classification approach for extracting urban land from Landsat TM in a Coastal City, China.
  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER. 2004. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ. 92:475–482.10.1016/j.rse.2003.10.021
  • Jia K, Wei X, Gu X, Yao Y, Xie X, Li B. 2014. Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto Int. 29:941–951.10.1080/10106049.2014.894586
  • Kamusoko C, Gamba J, Murakami H. 2013. Monitoring urban spatial growth in Harare Metropolitan Province, Zimbabwe. Adv Remote Sens. 2:322–331.10.4236/ars.2013.24035
  • Ke Y, Im J, Lee J, Gong H, Ryu Y. 2015. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens Environ. 164:298–313.10.1016/j.rse.2015.04.004
  • Klok L, Zwart S, Verhagen H, Mauri E. 2012. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resour Conserv Recy. 64:23–29.10.1016/j.resconrec.2012.01.009
  • Larsen PH, Goldsmith S, Smith O, Wilson ML, Strzepek K, Chinowsky P, Saylor B. 2008. Estimating future costs for Alaska public infrastructure at risk from climate change. Global Environ Change. 18:442–457.10.1016/j.gloenvcha.2008.03.005
  • Li J-J, Wang X-R, Wang X-J, Ma W-C, Zhang H. 2009. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol Complexity. 6:413–420.10.1016/j.ecocom.2009.02.002
  • Li P, Jiang L, Feng Z. 2013. Cross-comparison of vegetation indices derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) sensors. Remote Sens. 6:310–329.10.3390/rs6010310
  • Lo CP, Choi J. 2010. A hybrid approach to urban land use/cover mapping using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images. Int J Remote Sens. 25:2687–2700.
  • Lo CP, Quattrochi DA, Luvall JC. 2010. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int J Remote Sens. 18:287–304.
  • Lu D, Weng Q. 2005. Urban classification using full spectral information of Landsat ETM+ Imagery in Marion County, Indiana. Photogramm Eng Remote Sens. 71:1275–1284.
  • Lu N, Hernandez AJ, Ramsey RD. 2015. Land cover dynamics monitoring with Landsat data in Kunming, China: a cost-effective sampling and modelling scheme using Google Earth imagery and random forests. Geocarto Int. 30:186–201.
  • Manandhar R, Odeh IO, Ancev T. 2009. Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sens. 1:330–344.10.3390/rs1030330
  • Manatsa D, Unganai L, Gadzirai C, Behera S. 2012. An innovative tailored seasonal rainfall forecasting production in Zimbabwe. Nat Hazards. 52:1–21.
  • Namdar M, Adamowski J, Saadat H, Sharifi F, Khiri A. 2014. Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification. Int J Remote Sens. 35:8057–8073.10.1080/01431161.2014.978035
  • Odindi JO, Bangamwabo V, Mutanga O. 2013. Assessing the value of urban green spaces in mitigating multi-seasonal urban heat using MODIS Land Surface Temperature (LST) and Landsat 8 data. Int J Environ Res. 9:9–18.
  • Oort PAJv. 2005. Improving land cover change estimates by accounting for classification errors. Int J Remote Sens. 26:3009–3024.
  • Ormsby JP. 2007. Evaluation of natural and man-made features using Landsat TM data. Int J Remote Sens. 13:303–318.
  • Panah SKA, Dapper MD, Goossens R, Massoudi M. 2001. The use of TM thermal band for land cover/land use mapping in two different environmental conditions of Iran. Agric Sci Technol. 3:27–36.
  • Pengra B, Long J, Dahal D, Stehman SV, Loveland TR. 2015. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data. Remote Sens Environ. 165:234–248.
  • Petropoulos GP, Kalaitzidis C, Prasad Vadrevu K. 2012. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput Geosci. 41:99–107.10.1016/j.cageo.2011.08.019
  • Rossi F, Pisello AL, Nicolini A, Filipponi M, Palombo M. 2014. Analysis of retro-reflective surfaces for urban heat island mitigation: a new analytical model. Appl Energy. 114:621–631.10.1016/j.apenergy.2013.10.038
  • Roy DP, Wulder MA, Loveland TR, Woodcock RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, et al. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ. 145:154–172.10.1016/j.rse.2014.02.001
  • Salvati L, Sabbi A. 2011. Exploring long-term land cover changes in an urban region of southern Europe. Int J Sustainable Develop World Ecol. 18:273–283.
  • Sharma R, Ghosh A, Joshi PK. 2012. Analysing spatio-temporal footprints of urbanization on environment of Surat city using satellite-derived bio-physical parameters. Geocarto Int. 28:420–438.
  • Shoko C, Clark D, Mengistu M, Dube T, Bulcock H. 2015. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa. J Appl Remote Sens. 9:095997–095997.10.1117/1.JRS.9.095997
  • Stathakis D, Perakis K, Savin I. 2012. Efficient segmentation of urban areas by the VIBI. Int J Remote Sens. 33:6361–6377.10.1080/01431161.2012.687842
  • Stathopoulou M, Cartalis C. 2007. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: an application to major cities in Greece. Solar Energy. 81:358–368.10.1016/j.solener.2006.06.014
  • Sun L, Schulz K. 2015. The improvement of land cover classification by thermal remote sensing. Remote Sens. 7:8368–8390.10.3390/rs70708368
  • Tucker CJ, Townshend JR, Goff TE. 1985. African land-cover classification using satellite data. Science. 227:369–375.10.1126/science.227.4685.369
  • Wang C-Y, Zhu W-P. 2011. Analysis of the impact of urban wetland on urban temperature based on remote sensing technology. Procedia Environ Sci. 10:1546–1552.
  • Wania A, Kemper T, Tiede D, Zeil, P. 2014. Mapping recent built-up area changes in the city of Harare with high resolution satellite imagery. Appl Geogr. 46:35–44.10.1016/j.apgeog.2013.10.005
  • Weng Q, Lu D, Schubring J. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ. 89:467–483.10.1016/j.rse.2003.11.005
  • Witt RG, Minor TB, Sekhon RS. 2007. Use of HCMM thermal data to improve accuracy of MSS land-surface classification mapping. Int J Remote Sens. 6:1623–1636.
  • Xian G, Crane M. 2005. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sens Environ. 104:147–156.
  • Xian G, Homer C, Bunde B, Danielson P, Dewitz J, Fry J, Pu R. 2012. Quantifying urban land cover change between 2001 and 2006 in the Gulf of Mexico region. Geocarto Int. 27:479–497.10.1080/10106049.2011.652675
  • Yu X, Guo X, Wu Z. 2014. Land surface temperature retrieval from Landsat 8 TIRS – comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 6:9829–9852.10.3390/rs6109829
  • Yu X, Zhang A, Hou X, Li M, Xi Y. 2012. Multi-temporal remote sensing of land cover change and urban sprawl in the coastal city of Yantai, China. Int J Digital Earth. 6:137–154.
  • Yuan F, Bauer ME. 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ. 106:375–386.10.1016/j.rse.2006.09.003
  • Zhang H, Qi Z-f, Ye X-y, Cai Y-b, Ma W-c, Chen M-n. 2013. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl Geogr. 44:121–133.10.1016/j.apgeog.2013.07.021
  • Zhibo C, Xu J, He Y, Zheng J. 2006. Fast integer-pel and fractional-pel motion estimation for H.264/AVC. J Vis Commun Image Represent. 17:264–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.