603
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Centrality-based hierarchy for street network generalization in multi-resolution maps

&
Pages 1352-1366 | Received 19 Jan 2016, Accepted 29 Jun 2016, Published online: 20 Jul 2016

References

  • Barthelemy M. 2015. From paths to blocks: new measures for street patterns. Environ Planning B. 1–16. doi:10.1177/0265813515599982.
  • Benz SA, Weibel R. 2014. Road network selection for medium scales using an extended stroke-mesh combination algorithm. Cartogr Geogr Inform Sci. 41:323–339.10.1080/15230406.2014.928482
  • Brewer CA, Guidero EM, Stanislawski LV, Buttenfield BP, Raposo P. 2013. Labeling through scale using hierarchies of thinned road networks for design of the national map of the United States. Proceedings of the 26th international cartographic conference; Aug 25–30; Dresden, Germany.
  • Brewer CA, Stanislawski LV, Buttenfield BP, Sparks KA, McGilloway J, Howard MA. 2013. Automated thinning of road networks and road labels for multiscale design of The National Map of the United States. Cartogr Geogr Inform Sci. 40:259–270.10.1080/15230406.2013.799735
  • Chang DY. 1996. Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res. 95:649–655.10.1016/0377-2217(95)00300-2
  • Chen J, Hu YG, Li Z, Zhao RL, Meng LQ. 2009. Selective omission of road features based on mesh density for automatic map generalization. Int J Geogr Inform Sci. 23:1013–1032.10.1080/13658810802070730
  • Crucitti P, Latora V, Porta S. 2006a. Centrality measures in spatial networks of urban streets. Phys Rev E. 73:036125.01–036125.05.
  • Crucitti P, Latora V, Porta S. 2006b. Centrality in networks of urban streets. Chaos. 16:015113.10.1063/1.2150162
  • Edwards A, Mackaness W. 2000. Intelligent generalisation of urban road network. Proceedings of geographical information systems research UK 2004 conference (GISRUK 2000); April 5–7. York: University of York; p. 81–85.
  • Gülgen F. 2014. Road hierarchy with integration of attributes using fuzzy-AHP. Geocarto Int. 29:688–708.10.1080/10106049.2013.837102
  • Gülgen F, Gökgöz T. 2011. A block-based selection method for road network generalization. Int J Digital Earth. 4:133–153.10.1080/17538947.2010.489972
  • Harries C, Dines N. 1998. Time saver standards for landscape architecture: design and construction data. 2nd ed. New York, NY: McGraw-Hill Education; p. 340-4–340-9.
  • Hsieh TY, Lu ST, Tzeng GH. 2004. Fuzzy MCDM approach for planning and design tenders selection in public office buildings. Int J Project Manage. 22:573–584.10.1016/j.ijproman.2004.01.002
  • Jiang B, Claramunt C. 2004. A structural approach to the model generalization of an urban street network. GeoInformatica. 8:157–171.10.1023/B:GEIN.0000017746.44824.70
  • Jiang B, Liu X, Jia T. 2013. Scaling of geographic space as a universal rule for map generalization. Ann Assoc Am Geogr. 103:844–855.10.1080/00045608.2013.765773
  • Kazemi S, Forghani A. 2016. Knowledge-based generalisation of road networks. Int J Geoinform. 12:1–13.
  • Kurniawan SH, Zaphiris P. 2001. Reading online or on paper: which is faster? Proceedings of the 9th international conference on human computer interaction; New Orleans, LA, USA.
  • Mackaness WA, Beard KM. 1993. Use of graph theory to support map generalization. Cartogr Geogr Inform Sci. 20:210–221.10.1559/152304093782637479
  • Mikhailov L, Tsvetinov P. 2004. Evaluation of services using a fuzzy analytic hierarchy process. Appl Soft Comput. 5:23–33.10.1016/j.asoc.2004.04.001
  • Moller TA, Haines E, Hoffman N. 2008. Real-time rendering. 2nd ed. Wellesley (MA): A K Peters; p. 94–9610.1201/b10644
  • Morisset B, Ruas A. 1997. Simulation and agent modelling for road selection in generalisation. Proceedings of the ICA 18th international cartographic conference; Stockholm; p. 1376–1380.
  • Peper E, Gibney KH. 2000. Healthy computing with muscle biofeedback. 1st ed. Woerden: Biofeedback Foundation of Europe.
  • Porta S, Crucitti P, Latora V. 2006a. The network analysis of urban streets: a dual approach. Physica A. 369:853–866.10.1016/j.physa.2005.12.063
  • Porta S, Crucitti P, Latora V. 2006b. The network analysis of urban streets: a primal approach. Environ Planning B. 33:705–725.10.1068/b32045
  • Porta S, Crucitti P, Latora V. 2008. Multiple centrality assessment in Parma: a network analysis of paths and open spaces. Urban Des Int. 13:41–50.10.1057/udi.2008.1
  • Porta S, Latora V, Wang F, Strano E, Cardillo A, Scellato S, Iacoviello V, Messora R. 2009. Street centrality and densities of retail and services in Bologna, Italy. Environ Planning B. 36:450–465.10.1068/b34098
  • Rahimi M, Malek MR. 2015. Context-aware abstraction and generalization of street networks: two cognitively engineered user-oriented approaches using network Voronoi diagrams. Geocarto Int. 30:560–579.10.1080/10106049.2014.985742
  • Regnauld N, McMaster RB. 2007. A synoptic view of generalization operators. In: Mackaness WA, Ruas A, Sarjakoski LT, editors. Generalisation of geographic information. Oxford (UK): Elsevier; p. 37–66.10.1016/B978-008045374-3/50005-3
  • Richardson DE, Thomson RC. 1996. Integrating thematic, geometric, and topological information in the generalization of road networks. Cartographica. 33:75–83.10.3138/F150-7678-5Q15-8N06
  • Saaty TL. 1980. The analytic hierarchy process: planning, priority setting, resource allocation. New York (NY): McGraw-Hill; 437 p.
  • Sevtsuk A, Mekonnen M. 2012. Urban network analysis toolbox. Int J Geomat Spat Anal. 22:287–305.
  • Thomson RC, Richardson DE. 1999. The ‘Good continuation’ principle of perceptual organization applied to generalization of road networks. Road networks. Proceedings of the 19th international cartographic conference; Ottawa.
  • Vahidnia MH, Alesheikh A, Alimohammadi A, Bassiri A. 2008. Fuzzy analytical hierarchy process in GIS application. Proceedings of the the international archives of the photogrammetry, remote sensing and spatial information sciences; Beijing, vol. 37; p. 593–596.
  • Wang WC. 2012. Developing a line-of-sight based algorithm for urban street network generalization. Appl Geomat. 4:67–74.10.1007/s12518-011-0049-x
  • Weibel R, Dutton G. 1999. Generalising spatial data and dealing with multiple representations. In: Longley PA, Goodchild MF, Maguire DJ, Rhind DW, editors. Geographical information systems, principles, techniques, management and applications. 2nd ed. New York, NY: Wiley; p. 125–155.
  • Weiss R, Weibel R. 2014. Road network selection for small-scale maps using an improved centrality-based algorithm. J Spatial Inform Sci. 9:71–99.
  • Werner EB. 1991. Manual of visual fields (manuals in ophthalmology). New York (NY): Churchill Livingstone.
  • Zhou Q, Li Z. 2012. A comparative study of various strategies to concatenate road segments into strokes for map generalization. Int J Geogr Inform Sci. 26:691–715.10.1080/13658816.2011.609990
  • Zhou Q, Li Z. 2014. Use of artificial neural networks for selective omission in updating road networks. Cartogr J. 51:38–51.10.1179/1743277413Y.0000000042
  • Zhou Q, Li Z. 2015. How many samples are needed? An investigation of binary logistic regression for selective omission in a road network. Cartogr Geogr Inform Sci. 1–12. doi:10.1080/15230406.2015.1104265.
  • Zhou Q, Li Z. 2016. Empirical determination of geometric parameters for selective omission in a road network. Int J Geogr Inform Sci. 30:263–299.10.1080/13658816.2015.1085538

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.