998
Views
163
CrossRef citations to date
0
Altmetric
Original Articles

Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA)

, , , , , ORCID Icon & show all
Pages 1252-1272 | Received 08 Mar 2018, Accepted 30 Apr 2018, Published online: 21 May 2018

References

  • Ahmadlou M , Delavar M , Tayyebi A , Shafizadeh-Moghadam H . 2015. Using multivariate adaptive regression spline and artificial neural network to simulate urbanization in Mumbai, India. Int Arch Photogrammetry Remote Sens Spatial Info Sci. 40(1):31.10.5194/isprsarchives-XL-1-W5-31-2015
  • Alihodzic A , Tuba M . 2014. Improved hybridized bat algorithm for global numerical optimization. Computer Modelling and Simulation (UKSim). UKSim-AMSS 16th International Conference on: IEEE.
  • Ardalan A , Naieni KH , Kabir M-J , Zanganeh A-M , Keshtkar A-A , Honarvar M-R , Khodaie H , Osooli M . 2009. Evaluation of Golestan province’s early warning system for flash floods, Iran, 2006–7. Int J Biometeorol. 53(3):247–254.10.1007/s00484-009-0210-y
  • Barredo JI . 2009. Normalised flood losses in Europe: 1970–2006. Nat Hazards Earth Syst Sci. 9(1):97–104.10.5194/nhess-9-97-2009
  • Basse RM , Omrani H , Charif O , Gerber P , Bódis K . 2014. Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geogr. 53:160–171.10.1016/j.apgeog.2014.06.016
  • Blanco-Vogt Á , Haala N , Schanze J . 2015. Building parameters extraction from remote-sensing data and GIS analysis for the derivation of a building taxonomy of settlements–a contribution to flood building susceptibility assessment. Int J Image Data Fusion. 6(1):22–41.10.1080/19479832.2014.926296
  • Brody S , Blessing R , Sebastian A , Bedient P . 2014. Examining the impact of land use/land cover characteristics on flood losses. J Environ Planning Manage. 57(8):1252–1265.10.1080/09640568.2013.802228
  • Bui DT , Pradhan B , Nampak H , Bui Q-T , Tran Q-A , Nguyen Q-P . 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. J Hydrol. 540:317–330.
  • Bui DT , Tuan TA , Klempe H , Pradhan B , Revhaug I . 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13(2):361–378.
  • Burzel A , Dassanayake D , Oumeraci H . 2012. Spatial modelling of tangible and intangible losses in integrated risk analysisiresults of the XtremRisK project. Compr Flood Risk Manage. 143.
  • Burzel A , Dassanayake DR , Oumeraci H . 2015. Spatial modeling of tangible and intangible losses in integrated coastal flood risk analysis. Coastal Eng J. 57(01):1540008.
  • Chapi K , Singh VP , Shirzadi A , Shahabi H , Bui DT , Pham BT , Khosravi K . 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw. 95:229–245.10.1016/j.envsoft.2017.06.012
  • Daneshmandi M , Amiri H , Vahedi M , Farshi M , Saghafi A , Zigheymat F . 2010. Assessing the level of preparedness for confronting crisis such as flood, earthquake, fire and storm in some selected hospitals of Iran. Military Med J. 12(3):167–171.
  • Garg V , Deep K . 2017. Constrained Laplacian biogeography-based optimization algorithm. Int J Syst Assur Eng Manage. 8(2):867–885.10.1007/s13198-016-0539-7
  • Golestan province meteorological information report . 2007. Gorgan: Golstan Regional Water company.
  • Gomez H , Kavzoglu T . 2005. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Eng Geol. 78(1–2):11–27.10.1016/j.enggeo.2004.10.004
  • Hadidi A . 2015. A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl Energy. 150:196–210.10.1016/j.apenergy.2015.04.024
  • Hong H , Panahi M , Shirzadi A , Ma T , Liu J , Zhu AX , Chen W , Kougias I , Kazakis N . 2017. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ. 621: 1124–1141.
  • Hong H , Tsangaratos P , Ilia I , Liu J , Zhu A-X , Chen W . 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County. Sci Total Environ. 625:575–588.10.1016/j.scitotenv.2017.12.256
  • Hyder A , Iqbal N . 2016. Socio-economic losses of flood and household’s coping strategies: evidence from flood prone district of Pakistan. Pakistan Institute of Development Economics.
  • Jang J-S . 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. 23(3):665–685.10.1109/21.256541
  • Khosravi K , Nohani E , Maroufinia E , Pourghasemi HR . 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards. 83(2):947–987.10.1007/s11069-016-2357-2
  • Khosravi K , Pham BT , Chapi K , Shirzadi A , Shahabi H , Revhaug I , Prakash I , Bui DT . 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ. 627:744–755.10.1016/j.scitotenv.2018.01.266
  • Khosravi K , Pourghasemi HR , Chapi K , Bahri M . 2016. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ Monit Assess. 188(12):656.10.1007/s10661-016-5665-9
  • Kia MB , Pirasteh S , Pradhan B , Mahmud AR , Sulaiman WNA , Moradi A . 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin. Environ Earth Sci. 67(1):251–264.10.1007/s12665-011-1504-z
  • Mamdani EH , Assilian S . 1975. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud. 7(1):1–13.10.1016/S0020-7373(75)80002-2
  • Mansouri B , Salehi J , Etebari B , Moghaddam HK . 2012. Metal concentrations in the groundwater in Birjand flood plain. Bull Environ Contam Toxicol. 89(1):138–142.10.1007/s00128-012-0630-y
  • Nayak PC , Sudheer K , Rangan D , Ramasastri K . 2004. A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol. 291(1–2):52–66.10.1016/j.jhydrol.2003.12.010
  • Nayak P , Sudheer K , Rangan D , Ramasastri K . 2005. Short-term flood forecasting with a Neurofuzzy model. Water Resour Res. 41(4): 1–16.
  • Nefeslioglu H , Gokceoglu C , Sonmez H . 2008. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol. 97(3–4):171–191.10.1016/j.enggeo.2008.01.004
  • Noorollahi Y , Jokar MA , Kalhor A . 2016. Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers Manage. 115:17–25.10.1016/j.enconman.2016.02.041
  • Nourani V , Mano A . 2007. Semi-distributed flood runoff model at the subcontinental scale for southwestern Iran. Hydrol Process. 21(23):3173–3180.10.1002/(ISSN)1099-1085
  • Pham BT , Bui DT , Prakash I , Dholakia M . 2016. Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat Hazards. 83(1):97–127.10.1007/s11069-016-2304-2
  • Qiang Y , Lam NS . 2015. Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata. Environ Monit Assess. 187(3):57.10.1007/s10661-015-4298-8
  • Rahmati O , Haghizadeh A , Stefanidis S . 2016. Assessing the accuracy of GIS-based analytical hierarchy process for watershed prioritization; Gorganrood River Basin. Water Resour Manage. 30(3):1131–1150.10.1007/s11269-015-1215-4
  • Rahmati O , Pourghasemi HR . 2017. Identification of critical flood prone areas in data-scarce and ungauged regions: a comparison of three data mining models. Water Resour Manage. 31(5):1473–1487.10.1007/s11269-017-1589-6
  • Rahmati O , Pourghasemi HR , Zeinivand H . 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan province. Geocarto Int. 31(1):42–70.10.1080/10106049.2015.1041559
  • Rahmati O , Samani AN , Mahdavi M , Pourghasemi HR , Zeinivand H . 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 8(9):7059–7071.10.1007/s12517-014-1668-4
  • Rahmati O , Zeinivand H , Besharat M . 2016. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics Nat Hazards Risk. 7(3):1000–1017.10.1080/19475705.2015.1045043
  • Ramos C , Reis E . 2002. Floods in southern Portugal: their physical and human causes, impacts and human response. Mitig Adapt Strat Glob Change. 7(3):267–284.10.1023/A:1024475529524
  • Roughani M , Ghafouri M , Tabatabaei M . 2007. An innovative methodology for the prioritization of sub-catchments for flood control. Int J Appl Earth Obs Geoinf. 9(1):79–87.10.1016/j.jag.2006.06.001
  • Saghafian B , Farazjoo H , Bozorgy B , Yazdandoost F . 2008. Flood intensification due to changes in land use. Water Resour Manage. 22(8):1051–1067.10.1007/s11269-007-9210-z
  • Sandink D , Kovacs P , Oulahen G , Shrubsole D . 2016. Public relief and insurance for residential flood losses in Canada: current status and commentary. Can Water Res J Revue canadienne des ressources hydriques. 41(1–2):220–237.10.1080/07011784.2015.1040458
  • Shafizadeh-Moghadam H , Tayyebi A , Ahmadlou M , Delavar MR , Hasanlou M . 2017. Integration of genetic algorithm and multiple kernel support vector regression for modeling urban growth. Comput Environ Urban Syst. 65:28–40.10.1016/j.compenvurbsys.2017.04.011
  • Shirzadi A , Saro L , Joo OH , Chapi K . 2012. A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan. Nat Hazards. 64(2):1639–1656.10.1007/s11069-012-0321-3
  • Shirzadi A , Shahabi H , Chapi K , Bui DT , Pham BT , Shahedi K , Ahmad BB . 2017. A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena. 157:213–226.10.1016/j.catena.2017.05.016
  • Simon D . 2008. Biogeography-based optimization. IEEE Trans Evol Comput. 12(6):702–713.10.1109/TEVC.2008.919004
  • Sugeno M , Kang G . 1988. Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1):15–33.10.1016/0165-0114(88)90113-3
  • Tehrany MS , Lee M-J , Pradhan B , Jebur MN , Lee S . 2014. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environ Earth Sci. 72(10):4001–4015.10.1007/s12665-014-3289-3
  • Tehrany MS , Pradhan B , Jebur MN . 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol. 512:332–343.10.1016/j.jhydrol.2014.03.008
  • Tehrany MS , Pradhan B , Jebur MN . 2015. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Env Res Risk Assess. 29(4):1149–1165.10.1007/s00477-015-1021-9
  • Tehrany MS , Pradhan B , Mansor S , Ahmad N . 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena. 125:91–101.10.1016/j.catena.2014.10.017
  • Termeh SVR , Kornejady A , Pourghasemi HR , Keesstra S . 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ. 615:438–451.10.1016/j.scitotenv.2017.09.262
  • Thieken AH , Apel H , Merz B . 2015. Assessing the probability of large-scale flood loss events: a case study for the river Rhine. J Flood Risk Manage. 8(3):247–262.10.1111/jfr3.2015.8.issue-3
  • Wang G , Guo L . 2013. A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math. 2013.
  • Yalcin A , Reis S , Aydinoglu A , Yomralioglu T . 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon. Catena. 85(3):274–287.10.1016/j.catena.2011.01.014
  • Yang XS . 2010. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer; p. 65–74.
  • Yang XS . 2011. Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput. 3(5):267–274.10.1504/IJBIC.2011.042259
  • Yang XS , Hossein Gandomi A . 2012. Bat algorithm: a novel approach for global engineering optimization. Eng Comput. 29(5):464–483.10.1108/02644401211235834
  • Yilmaz S , Kucuksille EU . 2013. Improved bat algorithm (IBA) on continuous optimization problems. Lecture Notes Softw Eng. 1(3):279.10.7763/LNSE.2013.V1.61
  • Youssef AM , Pradhan B , Sefry SA . 2016. Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ Earth Sci. 75(1):12.10.1007/s12665-015-4830-8
  • Zadeh L . 1965. Sets, fuzzy. Inf Control. 8(3):338–353.10.1016/S0019-9958(65)90241-X
  • Zadeh LA . 1975. Fuzzy logic and approximate reasoning. Synthese. 30(3–4):407–428.10.1007/BF00485052
  • Zaher H , Ragaa N , Sayed H . 2017. A novel improved bat algorithm for job shop scheduling problem. Int J Appl. 164(5).
  • Zanardo S , Jewson S , Nicotina L , Hilberts A . 2016. Investigating the relationship between north Atlantic oscillation and flood losses at the European scale. EGU General Assembly Conference Abstracts.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.