349
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Data-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India

&
Pages 818-856 | Received 20 May 2018, Accepted 18 Oct 2018, Published online: 13 Feb 2019

References

  • Akgun A, Turk N. 2010. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Env Earth Sci. 61(3):595–611.
  • Akgun A. 2011. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Lzmir, Turkey. Landslides, DOI:10.1007/s10346-011-0283-7.
  • Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B. 2012. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci. 38:23–34.
  • Al-Sharif A, Pradhan B. 2015. Spatio-temporal prediction of urban expansion using bivariate statistical models: Assessment of the efficacy of evidential belief functions and frequency ratio models. Appl Spatial Anal Policy 1–19. DOI: 10.1007/S12061-015-9147-1.
  • Althuwaynee OF, Pradhan B, Lee S. 2012. Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci. 44:120–135. DOI:10.1016/j.cageo.2012.3
  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH. 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena. 114:21–36.
  • Anagnostopoulos GG, Fatichi S, Burlando P, 2015. An advanced process-based distributed model for the investigation of rainfall-induced landslides: the effect of process representation and boundary conditions. Water Resour. Res. 51(9):7501–7523. http://dx.doi.org/10.1002/2015WR016909.
  • Amiri MA, Karimi M, Sarab AA. 2014. Hydrocarbon resources potential mapping using the evidential belief functions and GIS, Ahvaz/Khuzestan Province, southwest Iran. Arab J Geosci. 8(6):3929–3941.
  • An P, Moon WM, Bonham-Carter GF. 1992. On knowledge-based approach on integrating remote sensing, geophysical and geological information. Houston, TX: IEEE; p.34–38.
  • Awasthi A, Chauhan SS. 2011. Using AHP and Dempster–Shafer theory for evaluating sustainable transport solutions. Environ Model Softw. 26(6):787–796.
  • Ayalew L, Yamagishi H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the KakudaYahiko Mountains, Central Japan. Geomorphology. 65(1–2):15–31. DOI:10.1016/j.geomorph.2004.06.010.
  • Basu AR. 1970. A geotechnical note on investigations of certain stretches of Border roads under Swastik Project in Sikkim and Darjeeling District, West Bengal, Unpublished GSI Report, FS 1969-1970.
  • Basu SR, Sarkar S. 1987. Ecosystem vis-a vis landslide: a case study in Darjeeling Himalaya, proce. Impact of Development on Environment. Geog Soc India 2:45–53.
  • Basu T, Pal S. 2017a. Identification of landslide susceptibility zones in Gish River basin, West Bengal, India. Georisk: Assess Manag Risk Eng Syst Geohazards. 12(1):14–28. DOI: 10.1080/17499518.2017.1343482
  • Basu T, Pal SP. 2017b. Exploring landslide susceptible zones by analytic hierarchy process (AHP) for the Gish River Basin, West Bengal, India. Spat Inf Res. 25(5):665–675. DOI: 10.1007/s41324-0170134-2
  • Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M. 2012. Probabilistic Rainfall Thresholds for Landslide Occurrence Using a Bayesian Approach. J Geophys Res. 117:F04006.
  • Beven K, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull. 24(1):43–69.
  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M. 2015. GIS based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine northeast Algeria. Bull Eng Geol Environ. 74(2):337–355.
  • Brabb EE. 1984. Innovative approaches to landslide hazard mapping. Proceedings 4th international symposium on landslides; Toronto; Vol 1, p. 307–324.
  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB. 2012a. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena. 96:28–40.
  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB. 2012b. Application of support vector machines in landslide susceptibility assessment for the Hoa Binh province (Vietnam) with kernel functions analysis. Int Environ Model Softw Soc. Leipzig, Germany, p 226.
  • Carranza EJM. 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol Rev. 35(3–4):383–400.
  • Carranza EJM, Hale M. 2001. Geologically constrained fuzzy mapping of gold mineralization potential, Baguio District, Philippines. Nat Resour Res. 10(2):125–136.
  • Carranza EJM, Hale M. 2003. Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio District, Philippines. Ore Geol Rev. 22(1–2):117–132.
  • Carranza EJM, Hale M, Faassen C. 2008a. Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geol Rev. 33(3–4):536–558.
  • Carranza EJM, Sadeghi M. 2010. Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geol Rev. 38(3):219–241.
  • Carranza EJM, van Ruitenbeek FJA, Hecker C, van der Meijde M, van der Meer FD. 2008b. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. Int J Appl Earth Observ Geoinf. 10(3):374–387.
  • Carranza EJM, Woldai T, Chikambwe EM. 2005. Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia. Nat Resour Res. 14(1):47–63.
  • Chalkias C, Ferentinou M, Polykretis C. 2014. GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences 4(3):176–190. DOI:10.3390/geosciences4030176.
  • Chau KT, Sze YL, Fung MK, Wong WY, Fong EL, Chan LCP. 2004. Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput Geosci. 30:429–443.
  • Chen W, Li W, Hou E, Zhao Z, Deng N, Bai H, Wang D. 2014. Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. Arab J Geosci. 7(11):4499–4511. DOI:10.1007/s12517-014-1369-z.
  • Cheng S, Yang G, Yu H, Li J, Zhang L. 2012. Impacts of Wenchuan earthquake-induced landslides on soil physical properties and tree growth. Ecol Indicators. 15(1):263–270.
  • Cheng TA, Lateh H, Peng KS. 2008. ‘Intelligence explanation system on landslide dissemination: a case study in Malaysia’. Proceedings of the first world landslide forum report: Implementing the 2006 Tokyo action plan on the international program on landslides (IPL). p. 330–333.
  • Choi J, Oh H-J, Lee H-J, Lee C, Lee S. 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol. 124:12–23. DOI:10.1016/j.enggeo.2011.09.011.
  • Chung CJ, Fabbri AG. 2005. Systematic procedures of landslide hazard mapping for risk assessment using Spatial Prediction Models. In: Glade T, Anderson MG, Crozier M J, editors. Landslide Hazard and Risk. London: Wiley; p. 139–174.
  • Crozier MJ. 1989. Landslides: Causes, consequences and environment. Abingdon, UK: Routledge.
  • Dai FC, Lee CF, Ngai YY. 2002. Landslide risk assessment and management: an overview. Eng Geol. 64(1):65–87.
  • Daneshvar MRM. 2014. Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, Northeast of Iran. Landslides. 11(6):1079–1091.
  • Davis JC. 2002. Statistics and data analysis in geology. 3rd ed. Hoboken, NJ: Wiley. p. 638.
  • Dempster AP. 1967. Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat. 38(2):325–339.
  • Dempster AP. 1968. A generalization of Bayesian inference. J R Stat Soc Ser B 30:205–247.
  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF. 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards. 65(1):135–165. DOI: 10.1007/s11069-012-0347-6
  • Ding Q, Chen W, Hong H. 2017. Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int. 32:619–639.
  • Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H. 2006. Application of logistic regression for landslide susceptibility zoning of Cekmece area, Istanbul, Turkey. Environ Geol. 51(2):241–256.
  • Edward JT, Frederick KL. 1976. Earth Science. USA: Bell and Howell Company. p. 40–45.
  • Ercanoglu M. 2005. Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks. Nat Hazards Earth Syst Sci. 5(6):979–992.
  • Ercanoglu M, Gokceoglu C. 2002. Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach. Environ Geol. 41:720–730.
  • Felicísimo A, Cuartero A, Remondo J, Quirós E. 2012. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides. 10:175–189. DOI 10.1007/s10346-012-0320-1
  • Fisher RA. 1936. The use of multiple measurements in taxonomic problems, Annales. Eugenics. 7(2):179–188.
  • Foumelis M, Lekkas E, Parcharidis I. 2004. Landslide susceptibility mapping by GIS-based qualitative weighting procedure in Corinth area. Bull Geol Soc Greece. XXXVI.
  • Ghosh S, Carranza EJM. 2010. Spatial analysis of mutual fault/fracture and slope controls on rocksliding in Darjeeling Himalaya, India. Geomorphology. 122(1–2):1–24.
  • Ghosh S, Carranza EJM, van Westen CJ, Jetten VG, Bhattacharya DN. 2011. Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology. 131(1–2):35–56.
  • Giannecchini R. 2006. Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Nat Hazards Earth Syst Sci. 6(3):357–364. DOI:10.5194/nhess-6-357-2006, 2006
  • Grozavu A, Plescan S, Patriche CV, Margarint MC, Rosca B. 2013. Landslide Susceptibility Assessment: GIS Application to a Complex Mountainous Environment. The Carpathians: Integrating Nature and Society Towards Sustainability, Environmental Science and Engineering. p. 31–44.
  • Guettouche MS. 2013. Modeling and risk assessment of landslides using fuzzy logic: Application on the slopes of the Algerian Tell (Algeria). Arab J Geosci. 6(9):3163–3173.
  • Gutierrez R, Gibeaut JC, Smyth RC, Hepner TL, Andrews JR. 2001. Precise airborne LiDAR surveying for coastal research and geohazards applications. International Archives on Photogrammetry and Remote Sensing, Volume XXXIV-3/W4, Annapolis, MD, 22–24 Oct. 2001, pp. 185–192.
  • Guillard C, Zezere J. 2012. Landslide Susceptibility Assessment and Validation in the Framework of Municipal Planning in Portugal: The Case of Loures Municipality. Environ. Manage. 50(4):721–735. DOI:10.1007/s00267-012-9921-7.
  • Gupta RP, Joshi BC. 1990. Landslide hazard zonation using the GIS approach – a case study from the Ramganga Catchment, Himalayas. Eng Geol. 28(1–2):119–131.
  • Gupta RP, Kanungo DP, Arora MK, Sarkar S. 2008. Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J App Earth Obs Geoinform. 10(3):330–341.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: an aid to a sustainable development. Geomorphology. 31(1–4):181–216.
  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology. 72(1–4):272–299.
  • Hall DE, Long MT, Remboldt MD. 1994. Slope Stability Reference Guide for National Forests in the United States. Washington, DC: United States Department of Agriculture, Forest Service. p. 321.
  • Hansen, A., Franks, C.A.M., Kirk, P.A., Brimicombe, A.J., Tung, F., 1995. Application of GIS to hazard assessment, with particular reference to landslides in Hong Kong. In: Carrara A, Guzzetti F, editors. Geographical information systems in assessing natural hazards. Dordrecht, The Netherlands: Kluwer Academic Publisher; p. 135–175.
  • Hong H, Pradhan B, Xu C, Bui DT. 2015. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena. 133:266–281.
  • Iwahashi J, Sato HP, Yamagishi H. 2006. The spatial distribution of shallow landslides caused by the Mid Niigata Prefecture Earthquake in 2004. J Geogr Survey Inst 110:81–89 (in Japanese; http://www.gsi.go.jp/REPORT/JIHO/vol110/9.pdf)
  • Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A. 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol. 11(4):909–926.
  • Kanungo DP, Arora MK, Sarkar S, Gupta RP. 2006. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility Zonation in Darjeeling Himalayas. Eng Geol. 85(3–4):347–366.
  • Kausar N, Majid A. 2016. Random forest-based scheme using feature and decision levels information for multi-focus image fusion. Pattern. Anal. Applic. 19(1): 221–236.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multicriteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439.
  • Komac M. 2006. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology. 74(1–4):17–28. DOI: 10.1016/j.geomorph.2005.07.005.
  • Koukis G, Tsiambaos G, Sabatakakis N. 1994. Slope movements in Greek territory: a statistical approach. Proceeding of the 7th international congress of IAEG Lisboa, Vol. 3. p. 4621–4628.
  • Lee S. 2004. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manage. 34(2):223–232.
  • Lee S, Choi J, Min K. 2002. Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol. 43(1–2):120–131.
  • Lee S, Hwang J, Park I. 2013. Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena. 100:15–30.
  • Lee S, Pradhan B. 2007. Landslide hazard mapping at Selangor Malaysia using frequency ratio and logistic regression models. Landslides. 4(1):33–41.
  • Lefsky M, Cohen W, Spies T. 2001. An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Can J Res. 31(1):78–87.
  • Liu C, Li W, Wu H, Lu P, Sang K, Sun W, Chen W, Hong Y, Li R. 2013. Susceptibility evaluation and mapping of China’s landslides based on multi-source data. Nat Hazards. 69(3):1477–1495.
  • Liu Y, Cheng Q, Xia Q, Wang X. 2015. The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China. Front Earth Sci. 9(2):342–354.
  • Ma F, Wang J, Yuan R, Zhao H, Guo J. 2013. Application of analytical hierarchy process and least-squares method for landslide susceptibility assessment along the Zhong-Wu natural gas pipeline, China. Landslides. 10(4):481–492.
  • Mallick J, Al-Wadi H, Atiqur R, Ahmed M. 2014. Landscape dynamic characteristics using satellite data from a mountainous watershed of Abha, Kingdom of Saudi Arabia. Environ Earth Sci. 72:4973–4984. DOI:10.1007/s12665-014-3408-1
  • Mandal S, Maiti R. 2014a. Role of lithological composition and lineaments in landsliding: a case study of Shivkhola Watershed, Darjeeling Himalaya. Int J Geol Earth Environ Sci. 4(1):126–132.
  • Mandal S, Maiti R. 2014b. Semi-quantitative Approaches for Landslide Assessment and Prediction. Berlin, Germany: Springer.
  • Mandal S, Mandal K. 2018. Modeling and mapping landslide susceptibility zones using GIS based multivariate binary logistic regression (LR) model in the Rorachu river basin of eastern Sikkim Himalaya, India. Model Earth Syst Environ. 4(1):69–88. DOI:10.1007/s40808-018-0426-0.
  • Mezughi TH, Akhir JM, Rafek A, Abdullah I. 2011. Landslide assessment using frequency ratio model applied to an area along the E-W highway (Gerik-Jeli). Am J Environ Sci. 7(1):43–50.
  • Mohammady M, Pourghasemi HR, Pradhan B. 2012. Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. J Asian Earth Sci. 61:221–236.
  • Mondal S, Mandal S. 2017a. RS & GIS-based landslide susceptibility mapping of the Balason River basin, Darjeeling Himalaya, using logistic regression (LR) model. Georisk Assess Manage Risk Eng Syst Geohazards. 12(1):29–44. DOI:10.1080/17499518.2017.1347949
  • Mondal S, Mandal S. 2017b. Application of frequency ratio (FR) model in spatial prediction of landslides in the Balason river basin, Darjeeling Himalaya. Spat Inf Res. 25:337–350. DOI:10.1007/s41324-017-0101-y
  • Moon WM. 1989. Integration of remote sensing and geological/geophysical data using Dempster-Shafer approach. Dig Int Geosci Remote Sens Symp. 838–841.
  • Moore ID, Grayson RB, Ladson AR. 1991. Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process. 5(1):3–30.
  • Naghibi SA, Pourghasemi HR. 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour Manage. 29(14):5217–5236.
  • Naghibi SA, Pourghasemi HR, Dixon B. 2016. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monitor Assess. 188(1):1–27.
  • Nandi A, Shakoor A. 2010. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol. 110(1–2):11–20.
  • Naranjo JL, van Westen CJ, Soeters R. 1994. Evaluating the use of training areas in bivariate statistical landslide hazard analysis – a case study in Columbia. ITC J. 3:292–300.
  • Nautiiyal SP. 1966. On the Stability of certain hill slopes in and around Darjeeling. W.B. Bull Geol Surv India 15:31–48.
  • Nefeslioglu HA, Duman TY, Durmaz S. 2008a. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology. 94(3–4):401–418.
  • Nefeslioglu HA, Gokceoglu C, Sonmez H. 2008b. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol. 97(3–4):171–191.
  • Nourani V, B, Pradhan, H, Ghaffari, SS Sharifi. 2014. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression and artificial neural network models. Nat Hazards. 71(1):523–547.
  • O’Leary DW, Friedman JD, Pohn HA. 1976. Lineament, linear, lineation: Sme proposed new standards for old terms. Geol Soc Am Bull. 87:1463–1469.
  • OFDA/CRED. 2007. ‘EM-DAT International Disaster Database’ www.em-dat.net. Université Catholique de Louvain, Brussels, Belgium.
  • Park N-W. 2011. Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environ Earth Sci. 62(2):367–376.
  • Park S, Choi C, Kim B, Kim J. 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci. 68(5):1443–1464.
  • Peng L, Niu R, Huang B, Wu X, Zhao Y, Ye R. 2014. Landslide susceptibility mapping based on rough set theory and support vector machines: a case of the Three Gorges area, China. Geomorphology. 204:287–301.
  • Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia M. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ Modell Softw. 84:240–250.
  • Pham BT, Bui DT. Pourghasemi, HR, Indra P. Dholakia M. 2017. Landslide susceptibility assesssment in the Uttarakhand area (India) using gis: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol. 128(1–2):255–273.
  • Pourghasemi HR, Goli Jirandeh A, Pradhan B, Xu C, Gokceoglu C. 2013a. Landslide susceptibility mapping using support vector machine and GIS. J Earth Syst Sci. 122(2):349–369.
  • Pourghasemi HR, Moradi HR, Aghda SF. 2013b. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards. 69(1):749–779.
  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR. 2013c. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci. 6(7):2351–2365.
  • Pradhan AMS, Kang HS, Lee S, Kim YT. 2016. Spatial model integration for shallow landslide susceptibility and its runout using a GIS–based approach in Yongin, Korea. Geocarto Intern. 2016:1–22.
  • Pradhan AMS, Kim YT. 2014. Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea. Nat Hazards. 72(2):1189–1217.
  • Pradhan AMS, Kim YT. 2016. Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea. Bull Eng Geol Environ. 76(4):1263–1279.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. 51:350–365.
  • Pradhan B, Abokharima MH, Jebur MN, Tehrany MS. 2014. Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat Hazards. 73(2):1019–1042.
  • Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw. 25(6):747–759.
  • Pradhan B, Oh HJ, Buchroithner M. 2010. Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomat Nat Hazards Risk. 1(3):199–223.
  • Ramesh V, Anbazhagan S. 2014. Landslide susceptibility mapping along Kolli hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models. Environ Earth Sci. 73(12):8009–8021. DOI 10.1007/s12665-014-3954-6
  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A. 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci. 7(2):725–742.
  • Reichenbach P, Rossi M, Malamud B, Mihir M, Guzzetti F. 2017. A review of statistically-based landslide susceptibility models. Earth-Sci Rev. 180:60–91. DOI:10.1016/j.earscirev.2018.03.001
  • Sang K. 2013. Landslide disaster data statistics and analysis in China during nearly 60 years. Sci Technol Commun. 10:109.
  • Sarkar S. 2010. Geo-Hazards in Sub Himalayan North Bengal. West Bengal, India: Department of Geography & Applied Geography, University of North Bengal.
  • Sengupta CK. 1995. Detailed Study of geofactors in selected hazard prone stretches along the surface communication routes in parts of Darjeeling Himalaya. Unpublished GSI Report, FS 1993-94 & 1994-95.
  • Shafer G. 1976. A mathematical theory of evidence, 297. Princeton, New Jersey: Princeton University Press.
  • Sharma AK, Krishna AP, Joshi V, Rawat MS, Singh KK. 2011. Landslide hazard zonation using geoinformatics a case study of Rong area, South Sikkim, Indian Landslides (2nd Indian Landslide Congress). IJISET 4:35–44.
  • Sharma LP, Patel N, Ghose MK, Debnath P. 2013. Synergistic application of fuzzy logic and Geoinformatics for landslide vulnerability zonation – a case study in Sikkim Himalayas, India. Appl Geomat. 5(4):271–284.
  • Sidle RC, Pearce AJ, O'Loughlin CL. 1985. Hillslope stability and land use. Water Resour Monogr. 11:140.
  • Slob S, Hack R. 2004. 3D terrestrial laser scanning as a new field measurement and monitoring technique. In: Engineering geology for infrastructure planning in Europe: a European perspective, Lectures Notes in Earth Sciences, Springer, Berlin/Heidelberg, 104:179–189.
  • Soja R, Starkel L. 2007. Extreme rainfalls in Eastern Himalaya and southern slope of Meghalaya Plateau and their geomorphological impacts. Geomorphology. 84(3–4):170–180.
  • Starkel L. 1972. The role of catastrophic rainfall in the shaping of the relief of the lower Himalaya (Darjeeling Hills). Geographia Polonica. 21:103–160.
  • Starkel L, Basu SR. 2000. Rains landslides and Floods in the Darjiling Himalayas. New Delhi: Indian Science Academy; p. 1–168.
  • Strahler AN. 1964. Quantitative geomorphology of drainage basin and channel network. Handb Appl Hydrol. 39–76.
  • Suh J, Choi Y, Roh TD, Lee HJ, Park HD. 2011. National-scale assessment of landslide susceptibility to rank the vulnerability to failure of rock-cut slopes along expressways in Korea. Environ Earth Sci. 63(3):619–632.
  • Tay LT, Lateh H, Hossain MK, Kamil AA. 2014. Landslide Science for a Safer Geoenvironment. Berlin, Germany: Springer International Publishing; p. 521–525.
  • Thiam AK. 2005. An evidential reasoning approach to land degradation evaluation: Dempster–Shafer theory of evidence. Trans GIS. 9(4):507–520.
  • Torkashvand AM, Irani A, Sorur J. 2014. The preparation of landslide map by Landslide Numerical Risk Factor (LNRF) model and Geographic Information System (GIS). Egypt J Remote Sens Space Sci. 17(2):159–170.
  • Tsangaratos P, Benardos A. 2014. Estimating landslide susceptibility through an artificial neural network classifier. Nat Hazards. 74(3):1–28.
  • Tsangaratos P, Ilia I. 2016. Comparison of a logistic regression and Native Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size. CATENA. 145:164–179.
  • Umar Z, Pradhan B, Ahmad A. 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena 118:124–135. DOI:10.1016/j.catena.2014.02.005
  • van Westen CJ. 1997. Application guide, ILWIS 2.1 for Windows. Enschede, The Netherlands: ITC; p. 73–84.
  • van Westen CJ, Rengers N, Soeters R. 2003. Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards. 30(3):399–419.
  • Varnes DJ. 1984. Landslide hazard zonation: a review of principles and practice. Natural Hazards. Vol. 3. Paris: Commission on Landslides of the IAEG, UNESCO; p. 63.
  • Venables WN, Ripley BD. 2002. Modern Applied Statistics with S. 4th ed. Berlin, Germany: Springer; p. 495.
  • Vorpahl P, Elsenbeer H, Marker M, Schroder B. 2012. How can statistical models help to determine driving factors of landslides? Ecol Model. 239:27–39.
  • Wan S, Lei TC, Chou TY. 2010. A novel data mining technique of analysis and classification for landslide problems. Nat Hazards. 52(1):211–230. DOI:10.1007/s11069-009-9366-3
  • Wang Q, Li W, Chen W, Bai H. 2015. GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China. J Earth Syst Sci. 124(7):1399–1415.
  • Wilson JP, Gallant JC. 2000. Terrain analysis. Hoboken, NJ: John Wiley & Sons; p. 479.
  • Xu C. 2013. Assessment of earthquake-triggered landslide susceptibility based on expert knowledge and information value methods: a case study of the 20 April 2013 Lushan, China Mw6. 6 earthquake. Disaster Adv. 6(13):119–130.
  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena. 85(3):274–287.
  • Yilmaz I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat Turkey). Comput Geosci. 35(6):1125–1138.
  • Yilmaz I, Keskin I. 2009. GIS based statistical and physical approaches to landslide susceptibility mapping (Şebinkarahisar, Turkey). Bull Eng Geol Environ. 68(4):459–471.
  • Youssef AM, Pradhan B, Jebur MN, El-Harbi HM. 2014. Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ Earth Sci. 73:1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.