4,269
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Incorporating Sentinel-1 SAR imagery with the MODIS MCD64A1 burned area product to improve burn date estimates and reduce burn date uncertainty in wildland fire mapping

ORCID Icon
Pages 340-360 | Received 03 Nov 2018, Accepted 17 Mar 2019, Published online: 10 Jun 2019

References

  • Ahmed T, Singh D, Gupta S, Raman B. 2016. An efficient application of fusion approach for hot spot detection with MODIS and PALSAR-1 data. Geocarto Int. 31(7):715–738.
  • Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO. 2011. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys. 11(9):4039–4072.
  • Alonso-Canas I, Chuvieco E. 2015. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens Environ. 163:140–152.
  • Andreae MO, Merlet P. 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycle. 15(4):955–966.
  • Atwood SA, Reid JS, Kreidenweis SM, Yu LE, Salinas SV, Chew BN, Balasubramanian R. 2013. Analysis of source regions for smoke events in Singapore for the 2009 El Nino burning season. Atmos Environ. 78:219–230.
  • Badarinath KVS, Kharol SK, Sharma AR. 2009. Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—a study using LIDAR, ground measurements and satellite data. J Atmos Solar-Terrestr Phys. 71(1):112–120.
  • Belenguer-Plomer MA, Tanase MA, Fernandez-Carrillo A, Chuvieco E. 2018. Insights into burned areas detection from Sentinel-1 data and locally adaptive algorithms. Active and passive microwave remote sensing for environmental monitoring II. Vol. 10788. Berlin, Germany: International Society for Optics and Photonics; p. 107880G.
  • Boschetti L, Roy D, Barbosa P, Boca R, Justice C. 2008. A MODIS assessment of the summer 2007 extent burned in Greece. Int J Remote Sens. 29(8):2433–2436.
  • Boschetti L, Roy DP, Justice CO, Giglio L. 2010. Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product. Int J Wildland Fire. 19(6):705–709.
  • Bourgeau-Chavez LL, Kasischke ES, French NHF, Szeto LH, Kherkher CM. 1994. Using ERS-1 SAR imagery to monitor variations in burn severity in an Alaskan fire-disturbed boreal forest ecosystem. Proceedings of IGARSS'94-1994 IEEE International Geoscience and Remote Sensing Symposium; Aug 8-12, Vol. 1. Pasadena, CA: IEEE. p. 243–245.
  • Bourgeau-Chavez LL, Kasischke ES, Brunzell S, Mudd JP, Tukman M. 2002. Mapping fire scars in global boreal forests using imaging radar data. Int J Remote Sens. 23(20):4211–4234.
  • Chuvieco E, Mouillot F, van der Werf GR, San Miguel J, Tanase M, Koutsias N, García M, Yebra M, Padilla M, Gitas I, et al. 2019. Historical background and current developments for mapping burned area from satellite earth observation. Remote Sens Environ. 225:45–64.
  • Cristofanelli P, Putero D, Adhikary B, Landi TC, Marinoni A, Duchi R, Calzolari F, Laj P, Stocchi P, Verza G, et al. 2014. Transport of short-lived climate forcers/pollutants (SLCF/P) to the Himalayas during the South Asian summer monsoon onset. Environ Res Lett. 9(8):084005.
  • Crutzen PJ, Andreae MO. 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science. 250(4988):1669–1678.
  • El Hajj M, Baghdadi N, Zribi M, Angelliaume S. 2016. Analysis of Sentinel-1 radiometric stability and quality for land surface applications. Remote Sens. 8(5):406.
  • Engelbrecht J, Theron A, Vhengani L, Kemp J. 2017. A simple normalized difference approach to burnt area mapping using multi-polarisation C-Band SAR. Remote Sens. 9(8):764.
  • Gaveau DL, Salim MA, Hergoualc'h K, Locatelli B, Sloan S, Wooster M, Marlier ME, Molidena E, Yaen H, DeFries R, et al. 2014. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci Rep. 4:6112.
  • Gibe HP, Cayetano MG. 2017. Spatial estimation of air PM 2.5 emissions using activity data, local emission factors and land cover derived from satellite imagery. Atmos Meas Tech. 10(9):3313.
  • Giglio L, Boschetti L, Roy DP, Humber ML, Justice CO. 2018. The collection 6 MODIS burned area mapping algorithm and product. Remote Sens Environ. 217:72–85.
  • Giglio L, Descloitres J, Justice CO, Kaufman YJ. 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ. 87(2–3):273–282.
  • Giglio L, Loboda T, Roy DP, Quayle B, Justice CO. 2009. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ. 113(2):408–420.
  • Giglio L, Randerson JT, Werf GR. 2013. Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4). J Geophys Res Biogeosci. 118(1):317–328.
  • Giglio L, Schroeder W, Justice CO. 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ. 178:31–41.
  • Gimeno M, San-Miguel-Ayanz J, Schmuck G. 2004. Identification of burnt areas in Mediterranean forest environments from ERS-2 SAR time series. Int J Remote Sens. 25(22):4873–4888.
  • Goodenough DG, Chen H, Richardson A, Cloude S, Hong W, Li Y. 2012. Mapping fire scars using Radarsat-2 polarimetric SAR data. Can J Remote Sens. 37(5):500–509.
  • Hall JV, Loboda TV, Giglio L, McCarty GW. 2016. A MODIS-based burned area assessment for Russian croplands: mapping requirements and challenges. Remote Sens Environ. 184:506–521.
  • Hawbaker TJ, Vanderhoof MK, Beal Y-J, Takacs JD, Schmidt GL, Falgout JT, Williams B, Fairaux NM, Caldwell MK, Picotte JJ, et al. 2017. Mapping burned areas using dense time-series of Landsat data. Remote Sens Environ. 198:504–522.
  • Hayasaka H, Noguchi I, Putra EI, Yulianti N, Vadrevu K. 2014. Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ Pollut. 195:257–266.
  • Hayasaka H, Sepriando A. 2018. Severe air pollution due to peat fires during 2015 Super El Niño in Central Kalimantan, Indonesia. Land-atmospheric research applications in South and Southeast Asia. Cham (Switzerland): Springer; p. 129–142.
  • Hoffmann WA, Schroeder W, Jackson RB. 2002. Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna. Geophys Res Lett. 29(22):159-177.
  • Huang H, Roy D, Boschetti L, Zhang H, Yan L, Kumar S, Gomez-Dans J, Li J. 2016. Separability analysis of sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination. Remote Sens. 8(10):873.
  • Humber ML, Boschetti L, Giglio L, Justice CO. 2018. Spatial and temporal intercomparison of four global burned area products. Int J Digital Earth. 12(4):1–25.
  • Huuva I, Fransson JE, Persson HJ, Wallerman J, Ulander LM, Blomberg E, Soja MJ. 2017. Measurements of forest biomass change using L-and P-band sar backscatter. Geoscience and remote sensing symposium (IGARSS), 2017 IEEE International; Jul 23-28; Fort Worth,Texas, USA: IEEE; p. 5818–5821.
  • Ikeda K, Tanimoto H. 2015. Exceedances of air quality standard level of PM2. 5 in Japan caused by Siberian wildfires. Environ Res Lett. 10(10):105001.
  • Imperatore P, Azar R, Calo F, Stroppiana D, Brivio PA, Lanari R, Pepe A. 2017. Effect of the vegetation fire on backscattering: an investigation based on Sentinel-1 observations. IEEE J Sel Top Appl Earth Observ Remote Sens. 10(10):4478–4492.
  • Inoue Y. 2018. Ecosystem carbon stock, atmosphere, and food security in slash-and-burn land use: a geospatial study in mountainous region of Laos. Land-atmospheric research applications in south and Southeast Asia. Cham (Switzerland): Springer; p. 641–665.
  • Itahashi S, Uno I, Irie H, Kurokawa JI, Ohara T, 2018. Impacts of biomass burning emissions on tropospheric NO 2 vertical column density over continental Southeast Asia. In Land-atmospheric research applications in South and Southeast Asia. Cham: Springer; p. 67–81.
  • Jenkins LK, Bourgeau-Chavez LL, French NH, Loboda TV, Thelen BJ. 2014. Development of methods for detection and monitoring of fire disturbance in the Alaskan tundra using a two-decade long record of synthetic aperture radar satellite images. Remote Sens. 6(7):6347–6364.
  • Justice C., Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y. 2002. The MODIS fire products. Remote Sens Environ. 83(1-2):244–262.
  • Kalogirou V, Ferrazzoli P, Della Vecchia A, Foumelis M. 2014. On the SAR backscatter of burned forests: a model-based study in C-band, over burned pine canopies. IEEE Trans Geosci Remote Sens. 52(10):6205–6215.
  • Kanabkaew T, Oanh NTK. 2011. Development of spatial and temporal emission inventory for crop residue field burning. Environ Model Assess. 16(5):453–464.
  • Karambelas A, Holloway T, Kiesewetter G, Heyes C, 2018. Constraining the uncertainty in emissions over India with a regional air quality model evaluation. Atmos Environ. 174:194–203.
  • Karila K, Nevalainen O, Krooks A, Karjalainen M, Kaasalainen S. 2014. Monitoring changes in rice cultivated area from SAR and optical satellite images in Ben Tre and Tra Vinh Provinces in Mekong Delta, Vietnam. Remote Sens. 6(5):4090–4108.
  • Kasischke ES, Bourgeau-Chavez LL, French NH. 1994. Observations of variations in ERS-1 SAR image intensity associated with forest fires in Alaska. IEEE Trans Geosci Remote Sens. 32(1):206–210.
  • Koplitz SN, Nolte CG, Pouliot GA, Vukovich JM, Beidler J. 2018. Influence of uncertainties in burned area estimates on modeled wildland fire PM2. 5 and ozone pollution in the contiguous US. Atmos Environ. 191:328–339.
  • Kukavskaya EA, Soja AJ, Petkov AP, Ponomarev EI, Ivanova GA, Conard SG. 2013. Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption. Can J for Res. 43(5):493–506.
  • Kurum M. 2015. C-band SAR backscatter evaluation of 2008 Gallipoli forest fire. IEEE Geosci Remote Sens Lett. 12(5):1091–1095.
  • Kusumaningtyas SDA, Aldrian E. 2016. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ Res Lett. 11(7):075007.
  • Lasko K, Vadrevu K. 2018. Improved rice residue burning emissions estimates: accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environ Pollut. 236:795–806.
  • Lasko K, Vadrevu KP, Nguyen TTN. 2018. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets. PLoS One. 13(5):e0196629.
  • Lasko K, Vadrevu KP, Tran VT, Ellicott E, Nguyen TT, Bui HQ, Justice C. 2017. Satellites may underestimate rice residue and associated burning emissions in Vietnam. Environ Res Lett. 12(8):085006.
  • Lentile LB, Holden ZA, Smith AM, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, Gessler PE, Benson NC. 2006. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int J Wildland Fire. 15(3):319–345.
  • Li P, Feng Z, Xiao C. 2018. Acquisition probability differences in cloud coverage of the available Landsat observations over mainland Southeast Asia from 1986 to 2015. Int J Digital Earth. 11(5):437–450.
  • Lievens H, Reichle RH, Liu Q, De Lannoy GJM, Dunbar RS, Kim SB, Das NN, Cosh M, Walker JP, Wagner W. 2017. Joint Sentinel‐1 and SMAP data assimilation to improve soil moisture estimates. Geophys Res Lett. 189:194-210
  • Liew SC, Kwoh LK, Padmanabhan K, Lim OK, Lim H. 1999. Delineating land/forest fire burnt scars with ERS interferometric synthetic aperture radar. Geophys Res Lett. 26(16):2409–2412.
  • Liu T, Marlier ME, Karambelas A, Jain M, Singh S, Singh MK, Gautam R, DeFries RS. 2019. Missing emissions from post-monsoon agricultural fires in northwestern India: regional limitations of MODIS burned area and active fire products. Environ Res Commun. 1(1):011007.
  • Lohberger S, Stängel M, Atwood EC, Siegert F. 2018. Spatial evaluation of Indonesia's 2015 fire‐affected area and estimated carbon emissions using Sentinel‐1. Glob Change Biol. 24(2):644–654.
  • Marlier ME, DeFries RS, Voulgarakis A, Kinney PL, Randerson JT, Shindell DT, Chen Y, Faluvegi G. 2013. El Niño and health risks from landscape fire emissions in Southeast Asia. Nat Clim Change. 3(2):131.
  • Mathieu R, Main R, Roy D, Naidoo L, Yang H. 2018. Detection of burned areas in Southern African Savannahs using time series of C-band sentinel-1 data. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium; Jul 22-27; Valencia, Spain: IEEE. p. 5337–5339.
  • Melchiorre A, Boschetti L. 2018. Global analysis of burned area persistence time with MODIS data. Remote Sens. 10(5):750.
  • Menges CH, Bartolo RE, Bell D, Hill GE. 2004. The effect of savanna fires on SAR backscatter in northern Australia. Int J Remote Sens. 25(22):4857–4871.
  • Nguyen BT, Do KP, L, Tran N, Bui QH, Nguyen TNT, Vuong VQ, Le TH. 2018. Enhancement of fire early warning system in Vietnam using spatial data and assimilation. Land-atmospheric research applications in south and Southeast Asia. Cham (Switzerland): Springer; p. 203–222.
  • Oanh NTK, Permadi DA, Dong NP, Nguyet DA. 2018. Emission of toxic air pollutants and greenhouse gases from crop residue open burning in Southeast Asia. Land-atmospheric research applications in South and Southeast Asia. Cham (Switzerland): Springer; p. 47–66.
  • Ohara TAHK, Akimoto H, Kurokawa JI, Horii N, Yamaji K, Yan X, Hayasaka T. 2007. An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys. 7(16):4419–4444.
  • Oliva P, Schroeder W. 2015. Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. Remote Sens Environ. 160:144–155.
  • Padilla M, Stehman SV, Chuvieco E. 2014. Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. Remote Sens Environ. 144:187–196.
  • Palandjian D, Gitas IZ, Wright R. 2009. Burned area mapping and post-fire impact assessment in the Kassandra peninsula (Greece) using Landsat TM and Quickbird data. Geocarto Int. 24(3):193–205.
  • Palmann C, Mavromatis S, Hernández M, Sequeira J, Brisco B. 2008. Earth observation using radar data: an overview of applications and challenges. Int J Digital Earth. 1(2):171–195.
  • Peve A, Stroppiana D, Calo F, Imperatore P, Boschetti L, Bignami C, Brivio PA, Lanari R. 2018. Exploitation of Copernicus sentinels data for sensing fire-disturbed vegetated areas. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium; Jul 22-27; Valencia,Spain: IEEE. p. 7589–7592.
  • Polychronaki A, Gitas I, Veraverbeke S, Debien A. 2013. Evaluation of ALOS PALSAR imagery for burned area mapping in Greece using object-based classification. Remote Sens. 5(11):5680–5701.
  • Prasad VK, Badarinath KVS, Gupta PK. 2002. Biomass burning emission inventory from remote sensing, GIS and ground based measurements ‐ a case study from secondary mixed deciduous forests, India. Geocarto Int. 17(2):13–20.
  • Ramanathan V, Carmichael G. 2008. Global and regional climate changes due to black carbon. Nat Geosci. 1(4):221.
  • Randerson JT, Chen Y, Werf GR, Rogers BM, Morton DC. 2012. Global burned area and biomass burning emissions from small fires. J Geophys Res: Biogeosci. 117(G4):1-23.
  • Reiche J, Hamunyela E, Verbesselt J, Hoekman D, Herold M. 2018. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sens Environ. 204:147–161.
  • Reid JS, Hyer EJ, Johnson RS, Holben BN, Yokelson RJ, Zhang J, Campbell JR, Christopher SA, Di Girolamo L, Giglio L, et al. 2013. Observing and understanding the Southeast Asian aerosol system by remote sensing: an initial review and analysis for the seven Southeast Asian studies (7SEAS) program. Atmos Res. 122:403–468.
  • Roberts SJ. 2000. Tropical fire ecology. Progr Phys Geogr. 24(2):281–288.
  • Roy DP. 1999. Multi-temporal active-fire based burn scar detection algorithm. Int J Remote Sen. 20(5):1031–1038.
  • Roy DP, Boschetti L. 2009. Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products. IEEE Trans Geosci Remote Sens. 47(4):1032–1044.
  • Roy DP, Boschetti L, Justice CO, Ju J. 2008. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens Environ. 112(9):3690–3707.
  • Saha S. 2002. Anthropogenic fire regime in a deciduous forest of central India. Curr Sci. 82(9):1144–1147.
  • Saikawa E, Trail M, Zhong M, Wu Q, Young CL, Janssens-Maenhout G, Klimont Z, Wagner F, Kurokawa JI, Nagpure AS, Gurjar BR. 2017. Uncertainties in emissions estimates of greenhouse gases and air pollutants in India and their impacts on regional air quality. Environ Res Lett. 12(6):065002.
  • San-Miguel-Ayanz J, Pereira JM, Boca R, Strobl P, Kucera J, Pekkarinen A. 2009. Forest fires in the European Mediterranean region: mapping and analysis of burned areas. Earth observation of wildland fires in Mediterranean ecosystems. Berlin: Springer; p. 189–203.
  • Schroeder W, Csiszar I, Morisette J. 2008. Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens Environ. 112(2):456–470.
  • Shi Y, Matsunaga T. 2017. Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002–2011 derived from remotely sensed data. Environ Sci Pollut Res. 24(20):16905–16916.
  • Siegert F, Hoffmann AA. 2000. The 1998 forest fires in East Kalimantan (Indonesia): a quantitative evaluation using high resolution, multitemporal ERS-2 SAR images and NOAA-AVHRR hotspot data. Remote Sens Environ. 72(1):7264–7277.
  • Singh G, Kant Y, Dadhwal VK. 2009. Remote sensing of crop residue burning in Punjab (India): a study on burned area estimation using multi-sensor approach. Geocarto Int. 24(4):273–292.
  • Small D, Miranda N, Meier E. 2009. A revised radiometric normalisation standard for SAR. Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009; Jul 12-17; Vol. 4. Capetown, South Africa: IEEE. p. IV–566.
  • Sonkaew T, Macatangay R. 2015. Determining relationships and mechanisms between tropospheric ozone column concentrations and tropical biomass burning in Thailand and its surrounding regions. Environ Res Lett. 10(6):065009.
  • Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, et al. 2003. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res: Atmos. 108(D21).
  • Stroppiana D, Azar R, Calò F, Pepe A, Imperatore P, Boschetti M, Silva J, Brivio PA, Lanari R. 2015a. Integration of optical and SAR data for burned area mapping in Mediterranean Regions. Remote Sensi. 7(2):1320–1345.
  • Stroppiana D, Azar R, Calò F, Pepe A, Imperatore P, Boschetti M, Silva JM, Brivio PA, Lanari R. 2015b. Remote sensing of burned area: a fuzzy-based framework for joint processing of optical and microwave data. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); July 26-31. Milan, Italy: IEEE. p. 1409–1412.
  • Tanase M, de la Riva J, Santoro M, Pérez-Cabello F, Kasischke E. 2011. Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sens Environ. 115(8):2075–2085.
  • Tanase MA, Santoro M, de la Riva J, Prez-Cabello F, Le Toan T. 2010. Sensitivity of X-, C-, and L-band SAR backscatter to burn severity in Mediterranean pine forests. IEEE Trans Geosci Remote Sens. 48(10):3663–3675.
  • Tansey K, Grégoire JM, Defourny P, Leigh R, Pekel JF, Van Bogaert E, Bartholomé E. 2008. A new, global, multi‐annual (2000–2007) burnt area product at 1 km resolution. Geophys Res Letter. 35(1):1-8.
  • Torbick N, Salas W, Chowdhury D, Ingraham P, Trinh M. 2017. Mapping rice greenhouse gas emissions in the Red River Delta, Vietnam. Carbon Manage. 8(1):99–108.
  • Urbanski S, Nordgren B, Albury C, Schwert B, Peterson D, Quayle B, Hao WM. 2018. A VIIRS direct broadcast algorithm for rapid response mapping of wildfire burned area in the western United States. Remote Sens Environ. 219:271–283.
  • Vadrevu KP, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C, Lau WK. 2012. Vegetation fires in the himalayan region–aerosol load, black carbon emissions and smoke plume heights. Atmos Environ. 47:241–251.
  • Vadrevu KP, Justice CO. 2011. Vegetation fires in the Asian region: satellite observational needs and priorities. Global Environ Res. 15(1):65–76.
  • Vadrevu KP, Lasko K, Giglio L, Justice C. 2015. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett. 10(10):105003.
  • Vadrevu KP, Lasko K, Justice C. 2014. Spatial variations in vegetation fires and carbon monoxide concentrations in south Asia. Remote sensing applications in environmental research. Cham (Switzerland): Springer; p. 131–149.
  • Vadrevu K, Ohara T, Justice C. 2017. Land cover, land use changes and air pollution in Asia: a synthesis. Environ Res Lett. 12(12):120201.
  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF Jr. 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys. 6(11):3423–3441.
  • van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC, Collatz GJ, et al. 2017. Global fire emissions estimates during 1997–2016. Earth Syst Sci Data. 9(2):697.
  • Verhegghen A, Eva H, Ceccherini G, Achard F, Gond V, Gourlet-Fleury S, Cerutti P. 2016. The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sens. 8(12):986.
  • Vogl RJ. 1974. Effects of fire on grasslands. In: Kozlowski TT, Ahlgren CE, editors. Fire and ecosystems.
  • Whelen T, Siqueira P. 2018. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sens Lett. 9(5):411–420.
  • Whitcraft AK, Vermote EF, Becker-Reshef I, Justice CO. 2015. Cloud cover throughout the agricultural growing season: impacts on passive optical earth observations. Remote Sens Environ. 156:438–447.
  • Wilson AM, Jetz W. 2016. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14(3):e1002415.
  • Yan X, Ohara T, Akimoto H. 2006. Bottom-up estimate of biomass burning in mainland China. Atmos Environ. 40(27):5262–5273.
  • Zhang L, Liu Y, Hao L. 2016. Contributions of open crop straw burning emissions to PM2.5 concentrations in China. Environ Res Lett. 11(1):014014.
  • Zhang T, Wooster M, de Jong M, Xu W. 2018. How well does the ‘small fire boost’ methodology used within the GFED4. Is fire emissions database represent the timing, location and magnitude of agricultural burning? Remote Sens. 10(6):823.
  • Zuhlke M, Fomferra N, Brockmann C, Peters M, Veci L, Malik J, Regner P. 2015. SNAP (Sentinel application platform) and the ESA Sentinel 3 toolbox. Sentinel-3 for Science Workshop; Dec; Vol. 734; June 2-5; Venice, Italy; p. 21.
  • Zúñiga-Vásquez JM, Cisneros-González D, Pompa-García M. 2017. Drought regulates the burned forest areas in Mexico: the case of 2011, a record year. Geocarto Int. 1–14.