207
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Groundwater vulnerability assessment of the chalk aquifer in the northern part of France

&
Pages 1193-1216 | Received 15 Dec 2018, Accepted 13 Jun 2019, Published online: 10 Jul 2019

References

  • Abiy AZ, Melesse AM, Behabtu YM, Abebe B. 2016. Groundwater vulnerability analysis of the Tana sub-basin: an application of DRASTIC Index Method. In: Landscape dynamics, soils and hydrological processes in varied climates. Cham: Springer; p. 435–461.
  • Added A, Hamza MH. 2000. Evaluation of the vulnerability to pollution in Metline aquifer (North-East of Tunisia) (master’s thesis). Tunisia: University of Tunis II, Geologic Department.
  • Agence Régionale de la Santé (ARS) de Beauvais. 2016. Données et Rapports Hydrogéolohues Des Communes D'Ons-enBray, Lacroix-Saint-Ouen, Baugy, Dieudonné, Puiseux-le-Hauberger et Saint-Just-en-Chaussée (Unpublished).
  • Al-Adamat RAN, Foster IDL, Baban S. 2003. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr. 23(4):303–324.
  • Aller L, Bennet T, Leher JH, Petty RJ, Hackett G. 1987. DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeological settings. Ada, Oklahoma 74820: U.S. Environmental Protection Agency, . EPA 600/2-87-035. p. 662.
  • Arthur JD, Wood HAR, Baker AE, Cichon JR, Raines GL. 2007. Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida. Nat Res Res. 16(2):93–107.
  • Baghapour MA, Nobandegani AF, Talebbeydokhti N, Bagherzadeh S, Nadiri AA, Gharekhani M, Chitsazan N. 2016. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. J Environ Health Sci Eng. 14:13.
  • Baize D, Girard M-C. 2008. et Association Française pour l’Etude du sol. Référentiel Pédologique. Versailles, France: Editions Quae; p. 435.
  • Bault V, Borde J, Follet R, Laurent A, Tourlière B, Leveau E, Willefert V. 2012. Atlas Hydrogéologique numérique de l'Oise. Phase 3: Notice. Rapport finale. Ed. BRGM/RP-61081-FR. p. 325.
  • Benedini M, Masciopinto C, Vurro M. 1994. An approach to describing problems of artificial groundwater recharge by means of the Hantush model. Proc Int Conf Hydrosoft. 94:21–23. September, Port Garros, Greece.
  • Ben Kabbour B, Zouhri L, Mania J, Colbeaux J-P. 2006. Assessing groundwater contamination risk using the DASTI/IDRISI GIS Method: Coastal System of Western Mamora, Morocco. Bull Eng Geol Environ. 65(4):463–470.
  • BRGM, 2009. Cartographie de la vulnérabilité intrinsèque des aquifères karstiques. Guide Méthodologique de la méthode PaPRIKa. BRGM/RP-57527-FR. Orléans, France.
  • Civita MV. 2008. The Italian “combined” approach in assessing and mapping the vulnerability of groundwater to contamination. Groundwater Symposium on Groundwater Flow and Transport Modeling; Ljubljana, Slovenia: Agencija RS za okolje. p. 17–28.
  • Civita M, De Maio M, Berberi F. 1997. SINTACS. Un sistema parametrico per la valutazione e lacartografia della vulnerabilita’ degli acquiferi all’inquinamento. Metodologia and utomatizzazione. Pitagora Editrice, Bologna. p. 60.
  • Dávila Pórcel RA, Schüth C, De León-Gómez H, Hoppe A, Lehné R. 2014. Land-use impact and nitrate analysis to validate DRASTIC vulnerability maps using a GIS platform of Pablillo River Basin, Linares, N.L., Mexico. IJG. 05(12):1468–1489.
  • Denny SC, Allen DM, Journeay JM. 2007. DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J. 15(3):483–493.
  • Doerfliger N. 1996. Advances in karst groundwater protection strategy using artificial tracer tests analysis and multiattribute vulnerability mapping (EPIK method). Thèse Sciences Neuchâtel, Literaturverz. Switzerland: University of Neuchâtel; p. 311.
  • Domenico PA, Schwartz FW. 1998. Physical and chemical hydrogeology. New York: John Wiley & Sons, Inc.; p. 505
  • Duarte L, Teodoro AC, Gonçalves JA, Guerner Dias AJ, Marques JE. 2014. Assessing groundwater vulnerability to pollution through the DRASTIC method. In: Murgante B., editors. Computational science and its applications – ICCSA 2014. ICCSA 2014. Lecture notes in computer science. Vol. 8582. Cham: Springer.
  • Ducommun R. 2010. Estimation et cartographie de la vulnérabilité des eaux souterraines en milieu urbain. Thèse, Faculté des Sciences, Université de Neuchâtel. p. 328.
  • Elfarrak H, Hakdaoui M, Fikri A. 2014. Development of vulnerability through the DRASTIC method and geographic information system (GIS) (case groundwater of Berrchid), Morocco. JGIS. 06(01):45–58.
  • Foster SSD. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvenbooden, W, Van Waegenigh, H.G., editors. Vulnerability of soil and ground water pollutants. The Hague: TNO Committee on Hydrological Research Information; p. 69–86.
  • Gogu R-C, Dassargues A. 2000. Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol J. 8(3):337–345.
  • Goldscheider N, Klute M, Sturm S, Hötzl H. 2000. The PI method – a GIS-based approach to mapping groundwater vulnerability, with special consideration of karst aquifers. Zeitschrift Für Angewandte Geologie. 46(3):157–166.
  • Herlinger R Jr, Viero AP. 2007. Groundwater vulnerability assessment in coastal plain of Rio Grande do Sul State, Brazil, using drastic and adsorption capacity of soils. Environ Geol. 52(5):819–829.
  • Jeannin P-Y, Cornaton F, Zwahlen F, Perrochet P. 2001. VULK: a tool for intrinsic vulnerability assessment and validation. 7th Conference on Limestone Hydrology and FissuredMedia. Sciences et Techniques de L’Environnement, Mémoire Hors-Série. 13:185–190.
  • Khosravi K, Sartaj M, Tsai FT-C, Singh VP, Kazakis N, Melesse AM, Prakash I, Tien Bui D, Pham BT. 2018. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci Tot Environ. 642:1032–1049.
  • Kim Y, Hamm S. 1999. Assessment of the potential for groundwater contamination using the DRASTIC/EGISTechnique, Cheongju Area, South Korea. Hydrogeol J. 7(2):227–235.
  • Lodwick W, Monson W, Svoboda L. 1990. Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int J Geogr Inform Syst. 4(4):413–428.
  • Mahler BJ, Valdes D, Musgrove M, Massei N. 2008. Nutrient dynamics as indicators of karst processes: comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, USA). J Contam. 98(1–2):36–49.
  • Margat J. 1968. Vulnerabilite des nappes d’eau souterrune a la pollution (Groundwater Vulnerability to Contamination). Bases de al Cartographie (Doc.). 68 SGC 198HYD. Orleans: BRGM.
  • Merchant JM. 1994. GIS-based groundwater pollution hazard assessment: a critical review of the DRASTIC model. Photogramm Eng Remote Sens. 60(9):1117–1127.
  • METEOFRANCE 2016. Site de prévision et de référencement météorologique de France [en ligne]. http://www.meteofrance.com/accueil.
  • Napolitano P, Fabbri AG. 1996. Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Kovar K, Nachtnebel HP, editors. Proc HydroGIS: application of geographic information systems in hydrology and water resources management. Vol. 235. Wallingford: IAHS Publication; p. 559–566.
  • Nazzal Y, Howari FM, Iqbal J, Ahmed I, Orm NB, Yousef A. 2019. Investigating aquifer vulnerability and pollution risk employing modified DRASTIC model and GIS techniques in Liwa area, United Arab Emirates. Groundwater Sus Dev. 8:567–578.
  • NRC (National Research Council). 1993. Ground water vulnerability assessment: predicting relative contamination potential under conditions of uncertainty. Washington, DC: The National Academies Press; p. 224. ISBN: 978-0-309-04799-9.
  • Ouedraogo I, Defourny P, Vanclooster M. 2016. Mapping the groundwater vulnerability for pollution at the pan African scale. Sci Total Environ. 544:939–953.
  • Panagopoulos GP, Antonakos AK, Lambrakis NJ. 2006. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J. 14(6):894–911.
  • Rahman A. 2008. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl Geogr. 28(1):32–53.
  • Rosen L. 1994. A study of the DRASTIC methodology with emphasis on Swedish conditions. Ground Water. 32(2):278–285.
  • Rupert MG. 2001. Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water. 39(4):625–630.
  • Saidi S, Bouri S, Ben Dhia H. 2010. Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci. 7:1579–1588.
  • Schnebelen N, Platel JP, Lenindre Y, Baudry D. 2002. Gestion des eaux souterraines en Aquitaine Année 5. Opération Sectorielle Protectionde la Nappe de L’Oligocène en Région Bordelaise – Rapport. Orléans, France: BRGM.
  • Sinan M, Razack M. 2009. An extension to the DRASTIC model to assess groundwater vulnerability to pollution: application to the Haouz aquifer of Marrakech (Morocco). Environ Geol. 57(2):349–363.
  • Stigter TY, Almeida P, Carvalho Dill A, Ribeiro L. 2002. Influence of irrigation on groundwater nitrate concentrations in areas considered to have low vulnerability to contamination. Proceedings of the XXXII IAH & VI ALHSUD Congress; Oct 2002; Mar del Plata, Argentina (CD-ROM).
  • Stigter TY, Ribeiro L, Dill AMMC. 2006. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J. 14(1–2):79–99.
  • Vías J, Andreo B, Ravbar N, Hötzl H. 2010. Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. J Environ Manage. 91(7):1500–1510.
  • Vrba J, Zoporozec A. 1994. Guidebook on mapping groundwater vulnerability. IAH-International Contributions to Hydrogeology. Vol. 16. Hannover: H. Heise; p. 131.
  • Wang Y, Merkel BJ, Li Y, Ye H, Fu S, Ihm D. 2007. Vulnerability of groundwater in quaternary aquifers to organic contaminants: a case study in Wuhan City, China. Environ Geol. 53(3):479–484.
  • Wyns R, Hardy R, Feugueur L, Monciardini C. 1979. Notice, Carte Géologique de la France à (1/50 000). Feuille Méru, Orléans, No. 126.
  • Zghibi A, Merzougui A, Chenini I, Ergaieg K, Zouhri L, Tarhouni J. 2016. Groundwater vulnerability analysis of Tunisian coastal aquifer: an application of DRASTIC Index Method in GIS environment. Groundwater Sust Dev. 2–3:169–181.
  • Zwahlen F. 2004. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final Report. COST Action 620. Brussels: European Cooperation in the field of scientific and technical research (COST).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.