497
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

A national fuel type mapping method improvement using sentinel-2 satellite data

, ORCID Icon &
Pages 1022-1042 | Received 06 Dec 2019, Accepted 28 Mar 2020, Published online: 28 Apr 2020

References

  • Alonso-Benito A, Arroyo LA, Arbelo M, Hernández-Leal P. 2016. Fusion of WorldView-2 and LiDAR data to map fuel types in the Canary Islands. Remote Sens. 8(8):669.
  • Alonso-Benito A, Arroyo LA, Arbelo M, Hernández-Leal P, González-Calvo A. 2013. Pixel and object-based classification approaches for mapping forest fuel types in Tenerife Island from ASTER data. Int J Wildland Fire. 22(3):306–317.
  • Alonso-Benito A, Hernandez-Leal PA, Arbelo M, Gonzalez-Calvo A, Moreno-Ruiz JA, Garcia-Lazaro JR. 2016. Satellite image based methods for fuels maps updating. [Internet]. In: Neale CMU, Maltese A, editors. Edinburgh, United Kingdom; [accessed 2019 Sep 3]; p. 999821. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2241990.
  • Arellano-Pérez S, Castedo-Dorado F, López-Sánchez C, González-Ferreiro E, Yang Z, Díaz-Varela R, Álvarez-González J, Vega J, Ruiz-González A. 2018. Potential of sentinel-2A data to model surface and canopy fuel characteristics in relation to crown fire hazard. Remote Sensing. 10(10):1645.
  • Arroyo L, Healey S, Cohen W, Cocero D, Manzanera JA. 2005. Regional fuel mapping using an object-oriented Classification of Quickbird imagery. Proceedings of Semana Geomática.
  • Arroyo LA, Healey SP, Cohen WB, Cocero D, Manzanera JA. 2006. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region. J Geophys Res. 111, p. G04S04.doi:https://doi.org/10.1029/2005JG000120
  • Arroyo LA, Pascual C, Manzanera JA. 2008. Fire models and methods to map fuel types: the role of remote sensing. For Ecol Manage. 256(6):1239–1252.
  • Baatz M, Benz U, Dehghani S, Heynen M, Höltje A, Hofmann P, Lingenfelder I, Mimler M, Sohlbach M, Weber M. 2004. eCognition professional user guide 4. Definiens Imaging, Munich.
  • Baatz M, Schäpe A. 2000. Multiresolution Segmentation: an optimization approach for high quality multi-scale image segmentation, 12.
  • Boschetti M, Stroppiana D, Brivio PA. 2010. Mapping burned areas in a mediterranean environment using soft integration of spectral indices from high-resolution satellite images. Earth Interact. 14(17):1–20.
  • Butsic V, Kelly M, Moritz M. 2015. Land use and wildfire: a review of local interactions and teleconnections. Land. 4(1):140–156.
  • Chuvieco E, Riaño D, Van Wagtendok J, Morsdof F. 2003. Fuel loads and fuel type mapping. In: Wildland fire danger estimation and mapping: The role of remote sensing data. Singapore: World Scientific; p. 119–142.
  • Congalton RG, Green K. 2008. Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton (FL): CRC Press.
  • De Rigo D, Libertà G, H, Durrant T, A, Vivancos T, San-Miguel-Ayanz J. 2017. Forest fire danger extremes in Europe under climate change: variability and uncertainty. European Union: Luxembourg.
  • Delwart S. 2015. Sentinel-2 user handbook. European Space Agency.
  • Dragozi E, Gitas I, Stavrakoudis D, Theocharis J. 2014. Burned area mapping using support vector machines and the FuzCoC feature selection method on VHR IKONOS imagery. Remote Sens. 6(12):12005–12036.
  • Eftychidis G, Laneve G, Ferrucci F, Lopez AS, Lourenco L, Clandillon S, Tampellini L, Hirn B, Diagourtas D, Leventakis G. 2015. PREFER: a European service providing forest fire management support product. s. In: Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015). Vol. 9535. [place unknown]: International Society for Optics and Photonics; p. 953517.
  • Elhag M. 2017. Consideration of Landsat-8 Spectral Band Combination in Typical Mediterranean Forest Classification in Halkidiki, Greece. Open Geosciences [Internet]. [accessed 2019 Sep 11] 9(1). http://www.degruyter.com/view/j/geo.2017.9.issue-1/geo-2017-0036/geo-2017-0036.xml.
  • Fernández-Álvarez M, Armesto J, Picos J. 2019. LiDAR-Based Wildfire Prevention in WUI: The Automatic Detection, Measurement and Evaluation of Forest Fuels. Forests. 10(2):148.
  • Foody GM. 2004. Thematic map comparison. Photogramm Eng Remote Sens. 70(5):627–633.
  • Füssel H-M, Jol A, Marx A, Hildén M, Aparicio A, Bastrup-Birk A, Bigano A, Castellari S, Erhard M, Georgi B. 2017. Climate change, impacts and vulnerability in Europe 2016-An indicator-based report. Copenhagen, Denmark: European Environment Agency.
  • Gamon JA, Peñuelas J, Field CB. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41(1):35–44. doi:https://doi.org/10.1016/0034-4257(92)90059-S.
  • García M, Saatchi S, Ustin S, Balzter H. 2018. Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery. Int J Appl Earth Obs Geoinf. 66:159–173.
  • Giakoumakis MN, Gitas Iz, San-Miguel J. 2002. Object-oriented classification modelling for fuel type mapping in the Mediterranean, using LANDSAT TM and IKONOS imagery—preliminary results. Forest Fires Research & Wildland Fire Safety Millpress, Rotterdam; p. 1–13.
  • Gitas IZ, Mitri GH, Kazakis G, Ghosn D, Xanthopoulos G. 2006. Fuel type mapping in Anopolis, Crete by employing QuickBird imagery and object-based classification. For Ecol Manage. 234(1):S228.
  • Gitelson A A, Merzlyak M N, Chivkunova O B. 2001. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves¶. Photochem Photobiol. 74(1):38 doi:https://doi.org/10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2.
  • Gitelson A A, Merzlyak M N. 1997. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 18(12):2691–2697. doi:https://doi.org/10.1080/014311697217558.
  • Gounaridis D, Chorianopoulos I, Symeonakis E, Koukoulas S. 2019. A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Sci Total Environ. 646:320–335.
  • Isida D, Maria I. 2016. Fuel type classification in the Mediterranean basin context: state of the art and future research. IJESD. 7(7):546–552.
  • Kalabokidis K, Palaiologou P, Gerasopoulos E, Giannakopoulos C, Kostopoulou E, Zerefos C. 2015. Effect of climate change projections on forest fire behavior and values-at-risk in Southwestern Greece. Forests. 6(12):2214–2240.
  • Kaufman Y J, Tanré D. 1996. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS. Remote Sens. Environ. 55(1):65–79. doi:https://doi.org/10.1016/0034-4257(95)00193-X.
  • Keane RE. 2015. Wildland fuel fundamentals and applications [Internet]. Cham: Springer International Publishing; [accessed 2018 Jul 10]. http://link.springer.com/10.1007/978-3-319-09015-3.
  • Keane RE, Burgan R, van Wagtendonk J. 2001. Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. Int J Wildland Fire. 10(4):301–319.
  • Keane RE, Mincemoyer SA, Schmidt KM, Long DG, Garner JL. 2000. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico. USDA Forest Service General Technical Report RMRS-GTR-46-CD.
  • Keane RE, Reeves M. 2012. Use of expert knowledge to develop fuel maps for wildland fire management. In: Expert knowledge and its application in landscape ecology. New York (NY): Springer; p. 211–228.
  • Lamelas-Gracia MT, Riaño D, Ustin S. 2019. A LiDAR signature library simulated from 3-dimensional Discrete Anisotropic Radiative Transfer (DART) model to classify fuel types using spectral matching algorithms. GIScience Remote Sens. 56(7):988–1023.
  • Lanorte A, Lasaponara R. 2008. Fuel type characterization based on coarse resolution MODIS satellite data. iForest. 1(1):60–64.
  • Lanorte A, Lasaponara R. 2011. On the use of satellite remote sensing data to characterize and map fuel types. In: International conference on computational science and its applications. Santander, Spain: Springer; p. 344–353.
  • Lasaponara R, Lanorte A, Pignatti S. 2006. Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data. Int J Remote Sens. 27(3):587–593.
  • de Leeuw J, Jia H, Yang L, Liu X, Schmidt K, Skidmore AK. 2006. Comparing accuracy assessments to infer superiority of image classification methods. Int J Remote Sens. 27(1):223–232.
  • Louis J, Debaecker V, Pflug B, Main-Knorn M, Bieniarz J, Mueller-Wilm U, Cadau E, Gascon F. 2016. Sentinel-2 SEN2COR: L2A processor for users. In: Living planet symposium. Prague, Czech Republic; p. 8.
  • Eurostat. 2015. LUCAS 2015 (Land Use / Cover Area Frame Survey). Technical reference document C1 Instructions for Surveyors. http://ec.europa.eu/eurostat/documents/205002/6786255/LUCAS2015-C1-Instructions-20150227.pdf (14 July 2018).
  • Main-Knorn M, Pflug B, Louis J, Debaecker V, Müller-Wilm U, Gascon F. 2017. Sen2Cor for Sentinel-2. In: Bruzzone L, Bovolo F, Benediktsson JA, editors. Image and Signal Processing for Remote Sensing XXIII [Internet]. Warsaw, Poland: SPIE; [accessed 2019 Sep 13]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10427/2278218/Sen2Cor-for-Sentinel-2/10.1117/12.2278218.full.
  • Mallinis G, Galidaki G, Gitas I. 2014. A comparative analysis of EO-1 Hyperion, Quickbird and Landsat TM imagery for fuel type mapping of a typical Mediterranean landscape. Remote Sensing. 6(2):1684–1704.
  • Mallinis G, Mitsopoulos ID, Dimitrakopoulos AP, Gitas IZ, Karteris M. 2007. Integration of local scale fuel type mapping and fire behavior prediction using high spatial resolution imagery. TOWARDS AN OPERATIONAL USE OF REMOTE SENSING IN FOREST FIRE MANAGEMENT.:111.
  • Mayer B, Kylling A. 2005. Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use. Atmos Chem Phys.:23.
  • Mcfeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7):1425–1432. doi:https://doi.org/10.1080/01431169608948714.
  • Merrill DF, Alexander ME. 1987. Glossary of forest fire management terms.
  • Mutanga O, Adam E, Cho M A. 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 18:399–406. doi:https://doi.org/10.1016/j.jag.2012.03.012.
  • National Park Service (NPS). U.S. Department of the Interior USD of the I. Fire Terminology [Internet]. [accessed 2020 Feb 24]. https://www.fs.fed.us/nwacfire/home/terminology.html.
  • Ng W-T, Rima P, Einzmann K, Immitzer M, Atzberger C, Eckert S. 2017. Assessing the Potential of Sentinel-2 and Pléiades Data for the Detection of Prosopis and Vachellia spp. in Kenya. Remote Sensing. 9(1):74 doi:https://doi.org/10.3390/rs9010074.
  • Norman LM, Middleton BR. 2018. Remote sensing analysis of vegetation at the San Carlos Apache Reservation, Arizona and surrounding area. J Appl Rem Sens. 12(02):1.
  • Oliveira S, Félix F, Nunes A, Lourenço L, Laneve G, Sebastián-López A. 2018. Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. J Environ Manage. 206:158–169.
  • Panajiotidis S, Papadopoulou ML. 2016. Human-landscape interactions in Halkidiki (NC Greece) over the last 3.5 millennia, revealed through palynological, and archaeological-historical archives. J Archaeolog Sci Rep. 7:138–145.
  • Pausas JG, Keeley JE. 2009. A Burning Story: The Role of Fire in the History of Life. BioScience. 59(7):593–601.
  • Peterson SH, Franklin J, Roberts DA, van Wagtendonk JW. 2013. Mapping fuels in Yosemite National Park. Can J for Res. 43(1):7–17.
  • Pettinari ML, Chuvieco E. 2016. Generation of a global fuel data set using the Fuel Characteristic Classification System. Biogeosciences. 13(7):2061–2076.
  • Pierce AD, Farris CA, Taylor AH. 2012. Use of random forests for modeling and mapping forest canopy fuels for fire behavior analysis in Lassen Volcanic National Park, California, USA. For Ecol Manage. 279:77–89.
  • Pyne SJ. 1984. Introduction to wildland fire. Fire management in the United States. New York (NY): John Wiley & Sons.
  • Razali SM, Nurud AA. 2012. A method of mapping forest fuel types in peat swamp forest. African J Agric Res. 7(12):1901–1909.
  • Reich RM, Lundquist JE, Bravo VA. 2004. Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA. Int J Wildland Fire. 13(1):119–129.
  • R.L. Pearson, L.D. Miller. 1972. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, ColoradoProc. 8th Int. Symp. on Remote Sens. of Environ., ERIM, Ann Arbor, MI .1357–1381.
  • Romero Ramirez FJ, Navarro-Cerrillo RM, Varo-Martínez MÁ, Quero JL, Doerr S, Hernández-Clemente R. 2018. Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data. Int J Appl Earth Obs Geoinf. 68:157–167.
  • Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55(2):95–107. doi:https://doi.org/10.1016/0034-4257(95)00186-7.
  • Rosa MF, Stow DA. 2014. Mapping fuels at the wildland-urban interface using colour ortho-images and LiDAR data. Geocarto International. 29(5):570–588.
  • Rothermel RC. 1983. How to predict the spread and intensity of forest and range fires.
  • Roujean J-L, Breon F-M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 51(3):375–384. doi:https://doi.org/10.1016/0034-4257(94)00114-3.
  • Rouse Jr JW, Haas RH, Schell JA, Deering DW. 1973.  Monitoring the vernal advancement and retrogradation of natural vegetation. NASA/GSFCT Type II Report, Greenbelt, MD, USA.
  • San-Miguel-Ayanz J, Durrant T, Boca R, Liberta G, Branco A, de Rigo D, Ferrari D, Maianti P, A, Vivancos T, Pfeifer H, et al. 2019. Advance EFFIS report on forest fires in Europe, Middle East and North Africa 2018.
  • San-Miguel-Ayanz J, Moreno JM, Camia A. 2013. Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. For Ecol Manage. 294:11–22.
  • Scott JH, Burgan RE. 2005. Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model.
  • Sesnie S, Eagleston H, Johnson L, Yurcich E. 2018. In-situ and remote sensing platforms for mapping fine-fuels and fuel-types in sonoran semi-desert grasslands. Remote Sens. 10(9):1358.
  • Sims D A, Gamon J A. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81(2-3):337–354. doi:https://doi.org/10.1016/S0034-4257(02)00010-X.
  • Stavros EN, Coen J, Peterson B, Singh H, Kennedy K, Ramirez C, Schimel D. 2018. Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction. Remote Sens Appl Soc Environ. 11:41–50.
  • Stefanidou A, Dragozi E, Stavrakoudis D, Gitas IZ. 2018. Fuel type mapping using object-based image analysis of DMC and Landsat-8 OLI imagery. Geocarto Int. 33(10):1064–1083.
  • Stocker T. 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Sumnall M, Fox TR, Wynne RH, Thomas VA. 2017. Mapping the height and spatial cover of features beneath the forest canopy at small-scales using airborne scanning discrete return Lidar. ISPRS J Photogramm Remote Sens. 133:186–200.
  • Tanase MA, Gitas IZ. 2008. An examination of the effects of spatial resolution and image analysis technique on indirect fuel mapping. IEEE J Sel Top Appl Earth Observ Remote Sens. 1(4):220–229.
  • Tompoulidou M, Stefanidou A, Grigoriadis D, Dragozi E, Stavrakoudis D, Gitas IZ. 2016. The Greek National Observatory of Forest Fires (NOFFi). In: Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016). Vol. 9688. Cyprus: International Society for Optics and Photonics; p. 96880N.
  • Toukiloglou P, Eftychidis G, Gitas I, Tompoulidou M. 2013. ArcFuel methodology for mapping forest fuels in Europe. In: First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013). Vol. 8795. International Society for Optics and Photonics; p. 87951J.
  • US Wildland Fire Leadership Council. 2004. Strategic issues panel on fire suppression costs. Large fire suppression costs: strategies for cost management. USA.
  • Van Wagtendonk JW, Root RR. 2003. The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuel models in Yosemite National Park, USA. Int J Remote Sens. 24(8):1639–1651.
  • Varga TA, Asner GP. 2008. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park. Ecol Appl. 18(3):613–623.
  • Wilson BA, Ow CF, Heathcott M, Milne D, McCaffrey TM, Ghitter G, Franklin SE. 1994. Landsat MSS classification of fire fuel types in Wood Buffalo National Park. Northern Canada. Global Ecol Biogeogr Lett. 4(2):33–39.
  • Xiao-Rui T, McRae DJ, Li-Fu S, Ming-Yu W. 2005. Fuel classification and mapping from satellite imagines. J Res. 16(4):311–316.
  • Yoon Y-S, Kim Y-S. 2007. Application of hyperion hyperspectral remote sensing data for wildfire fuel mapping. Korean J Remote Sens. 23(1):21–32.
  • Yu Q, Gong P, Clinton N, Biging G, Kelly M, Schirokauer D. 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm Eng Remote Sens. 72(7):799–811.
  • Zhu X, Liu D. 2014. Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS J Photogramm Remote Sens. 96:1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.