666
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

ASTER and WorldView-3 satellite data for mapping lithology and alteration minerals associated with Pb-Zn mineralization

, , ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1782-1812 | Received 15 Mar 2020, Accepted 01 Jun 2020, Published online: 13 Jul 2020

References

  • Abrams M, Tsu H, Hulley G, Iwao K, Pieri D, Cudahy T, Kargel J. 2015. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: review of global products. Int J Appl Earth Obs Geoinf. 38:292–301.
  • Abubakar AJA, Hashim M, Pour AB. 2019. Remote sensing satellite imagery for prospecting geothermal systems in an aseismic geologic setting: Yankari Park, Nigeria. Int J Appl Earth Obs Geoinf. 80:157–172.
  • Adams JB, Smith MO, Gillespie AR. 1993. Imaging spectroscopy: interpretation based on spectral mixture analysis. In: Pieters CM, Englert PAJ, editors. Remote geochemical analysis: elemental and mineralogical composition. New York: Cambridge University Press; p. 145–166.
  • Adams JB, Sabol DE, Kapos V, Filho RA, Roberts DA, Smith MO, Gillespie AR. 1995. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sens Environ. 52(2):137–154.
  • Aghanabati A. 2004. Geology of Iran. Geological Survey of Iran, 587. pp. (in Persian).
  • Ahmadirouhani R, Karimpour MH, Rahimi B, Malekzadeh-Shafaroudi A, Pour AB, Pradhan B. 2018. Integration of SPOT-5 and ASTER satellite data for structural tracing and hydrothermal alteration mineral mapping: implications for Cu–Au prospecting. Int J Image Data Fusion. 9(3):237–262.
  • Bedini E. 2019. Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain. Adv Space Res. 63(10):3346–3357.
  • Berberian M, King GCP. 1981. Towards a Paleogeography and tectonic evolution of Iran. Can J Earth Sci. 18(2):210–265.
  • Ben-Dor E, Kruse FA, Lefkoff AB, Banin A. 1995. Comparison of three calibration techniques for utilization of GER 63-channel aircraft scanner data of Makhtesh Ramon, Nega, Israel. Int J Rock Mech Mining Sci Geomech Abstr. 32:164A.
  • Bishop JL, Murad E. 2005. The visible and infrared spectral properties of jarosite and alunite. Am Mineral. 90(7):1100–1107.
  • Boardman JW, Kruse FA, Green RO. 1995. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries. Fifth JPL Airborne Earth Science Workshop, JPL Publication 95-1, v. 1. p. 23–26.
  • Boardman JW. 1989. Inversion of imaging spectrometry data using singular value decomposition. Proceedings, IGARSS’89, 12th Canadian Symposium on Remote Sensing, v. 4. p. 2069–2072.
  • Boardman JW. 1992. Sedimentary facies analysis using imaging spectrometry: A geophysical inverse problem [unpublished Ph.D. thesis]. Boulder: University of Colorado; p. 212.
  • Boardman JW. 1993. Automated spectral unmixing of AVIRIS data using convex geometry concepts: in Summaries. Fourth JPL Airborne Geoscience Workshop, JPL Publication 93-26, v. 1. p. 11–14.
  • Boardman JW, Kruse FA. 1994. Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada. Proceedings, Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan; Ann Arbor, MI. p. I-407–I-418.
  • Bolouki SM, Ramazi HR, Maghsoudi A, Beiranvand Pour A, Sohrabi G. 2019. A remote sensing-based application of bayesian networks for epithermal gold potential mapping in Ahar-Arasbaran Area, NW Iran. Remote Sens. 12(1):105.
  • Chang Q, Jing L, Panahi A. 2006. Principal component analysis with optimum order sample correlation coefficient for image enhancement. Int J Remote Sens. 27 (16):3387–3401.
  • Clark RN. 1999. Spectroscopy of rock and minerals and principles of spectroscopy. In: Rencz AN, editor. Remote sensing for the earth sciences: manual of remote sensing 3. New York: Wiley; p. 3–58.
  • Cloutis E, Hawthorne F, Mertzman S, Krenn K, Craig M, Marcino D, Methot M, Strong J, Mustard J, Blaney D. 2006. Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus. 184(1):121–157.
  • Crosta AP, Souza Filho CR, Azevedo F, Brodie C. 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens. 24(21):4233–4240.
  • Crosta A, Moore J. 1989. Enhancement of Landsat thematic mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: a prospecting case history in Greenstone belt terrain. Proceedings of the 7th ERIM Thematic Conference: Remote Sensing for Exploration Geology; 2–6 October; Calgary, AB, Canada, p. 1173–1187.
  • Davoudzadeh M, Lensch G, Weber-Diefenbach K. 1986. Contribution to the paleogeography, stratigraphy and tectonics of the Infracambrian and lower Paleozoic of Iran: Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen. 172:245–269.
  • DigitalGlobe. 2014. WorldView-3 datasheet. https://www.digitalglobe.com/sites/default/files/DG_WorldView3_DS_forWeb_0.pdf (In)
  • Eklundh L, Singh A. 1993. A comparative analysis of standardized and unstandardized principal component analysis in remote sensing. Int J Remote Sens. 14(7):1359–1370.
  • Feng Y, Xiao B, Li R, Deng C, Han J, Wu C, Li G, Shi H, Lai C. 2019. Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu-Mo deposit in the Great Xing’an Range, NE China: Metallogenic and exploration implications. Ore Geol Rev. 112:103062.
  • Foerster H, Jafarzadeh A. 1994. The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field. Econ Geol. 89(8):1697–1721.
  • Gaffey SJ. 1986. Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. Am Mineral. 71:151–162.
  • Ghanbari Y, Hezarkhani A, Ataei M, Pazand K. 2012. Mineral potential mapping with fuzzy models in the Kerman–Kashmar tectonic zone. Appl Geomat. 4(3):173–186.
  • Govil H, Gill N, Rajendran S, Santosh M, Kumar S. 2018. Identification of new base metal mineralization in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration. Ore Geol Rev. 92:271–283.
  • Green AA, Berman M, Switzer P, Craig MD. 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens. 26(1):65–74.
  • Guha A, Yamaguchi Y, Chatterjee S, Rani K, Vinod Kumar K. 2019. Emittance spectroscopy and broadband thermal remote sensing applied to phosphorite and its utility in geoexploration: a study in the parts of Rajasthan, India. Remote Sens. 11(9):1003.
  • Gupta RP, Tiwari RK, Saini V, Srivastava N. 2013. A simplified approach for interpreting principal component images. ARS. 02(02):111–119.
  • Haghipour A. 1977. Geological map of the Posht-e-Badam Area 1: 100 000. Geological Survey of Iran.
  • Haghipour A, Pelissier G. 1977. Geology of the Saghand sector. In: Haghipour A, Valeh N, Pelissier G, Davoudzadeh M, editors. Explanatory text of the Ardekan Quadrangle map: Geological Survey of Iran, H8; p. 10–68.
  • Haghipour A, Pelissier G. 1968. Geology of the Posht-e-Badam-Saghand area (east central Iran). Iran Geological Survey Note 48; p. 144.
  • Hosseini S, Lashkaripour GR, Moghadas NH, Ghafoori M, Pour AB. 2019. Lineament mapping and fractal analysis using SPOT-ASTER satellite imagery for evaluating the severity of slope weathering process. Adv Space Res. 63(2):871–885.
  • Huckriede R, Kürsten M, Venzlaff H. 1962. Zur Geologie Des Gebietes Zwischen Kerman Und Sagand (Iran). Beihefte Zum Geologischen Jahrbuch. 51:197.
  • Hunt GR. 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics. 42(3):501–513.
  • Hunt GR, Ashley RP. 1979. Spectra of altered rocks in the visible and near-infrared. Econ Geol. 74(7):1613–1629.
  • Husseini MI. 1989. Tectonic and deposition model of late Precambrian-Cambrian Arabian and adjoining plates. AAPG Bull. 73(9):1117–1131.
  • Hu B, Xu Y, Wan B, Wu X, Yi G. 2018. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China. Ore Geol Rev. 101:384–397.
  • Iwasaki A, Tonooka H. 2005. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans Geosci Remote Sens. 43(12):2747–2751.
  • Koçal A. 2004. A methodology for detection and evaluation of lineaments from satellite imagery [MS thesis]. Middle East Technical University. p. 121.
  • Koike K, Nagano S, Ohmi M. 1995. Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Comput Geosci. 21 (9):1091–1104.
  • Kuester M. 2016. Radiometric use of WV-3 imagery. Technical Note. Westminster (CO): DigitalGlobe; p. 12.
  • Kuester MA, Ochoa M, Dayer A, Levin J, Aaron D, Helder DL, Leigh L, Czapla- Meyers J, Anderson N, Bader B, et al. 2015. Absolute radiometric calibration of the DigitalGlobe Fleet and updates on the new WV-3 sensor suite. Technical Note. Westminster (CO): DigitalGlobe; p. 16.
  • Kuosmanen V, Laitinen J, Arkimaa H, Kuosmanen E. 2000. Hyperspectral characterization of selected remote detection targets in the mines of HYDO partners. Geological Survey of Finland. Archive report RS/2000/02.
  • Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH. 1993. The Spectral Image Processing System (SIPS) – interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ. 44(2–3):145–163.
  • Kruse FA, Boardman JW, Huntington JF. 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens. 41(6):1388–1400.
  • Kruse FA, Perry SL. 2007. Regional mineral mapping by extending hyperspectral signatures using multispectral data. IEEE Trans Geosci Remote Sens. 4:1–14.
  • Kumar C, Chatterjee S, Oommen T, Guha A. 2020. Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India. Int J Appl Earth Obs Geoinf. 86:102006.
  • Leach DL, Bradley DC, Huston D, Pisarevsky SA, Taylor RD, Gardoll SJ. 2010. Sediment-hosted lead-zinc deposits in Earth history. Econ Geol. 105(3):593–625.
  • Leach DL, Taylor RD, Fey DL, Diehl SF, Saltus RW. 2010. A deposit model for Mississippi Valley-type lead-zinc ores. Chapter A of mineral deposit models for resource assessment. USGS, Scientific Investigations Report 2010-5070-A, p. 52.
  • Loughlin WP. 1991. Principal components analysis for alteration mapping. Photogramm Eng Remote Sens. 57:1163–1169.
  • Mars JC. 2018. Mineral and lithologic mapping capability of WorldView 3 data at Mountain Pass, California, using true- and false-color composite images, band ratios, and logical operator algorithms. Econ Geol. 113 (7):1587–1601.
  • Mars JC, Rowan LC. 2011. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonate volcano, Afghanistan. Geosphere. 7(1):276–289.
  • Mars JC, Rowan LC. 2010. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens Environ. 114(9):2011–2025.
  • Mars JC, Rowan LC. 2011. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere. 7(1):276–289.
  • Masoodi M, Yassaghi A, Nogole Sadat MAA, Neubauer F, Bernroider M, Friedl G, Genser J, Houshmandzadeh A. 2013. Cimmerian evolution of the Central Iranian basement: evidence from metamorphic units of the Kashmar–Kerman tectonic zone. Tectonophysics. 588:189–208.
  • Molan YE, Behnia P. 2013. Prospectivity mapping of Pb–Zn SEDEX mineralization using remote-sensing data in the Behabad area, Central Iran. Int J Remote Sens. 34(4):1164–1179.
  • Mondal S, Guha A, Pal SK, Porwal A, Chatterjee S, Rani K, Beiranvand Pour A, Vinod Kumar K. 2019. Conjugate utilization of Landsat -8 OLI, ground gravity and magnetic data for targeting mafic cumulates within anorthositic layered complex of Sittampundi, India. Geocarto Int. :1–18. DOI:https://doi.org/10.1080/10106049.2019.1669726
  • Ninomiya Y, Fu B. 2019. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geol Rev. 108:54–72.
  • Ninomiya Y, Fu B. 2016. Regional lithological mapping using ASTER-TIR data: Case study for the Tibetan Plateau and the surrounding area. Geosciences. 6(3):39.
  • Ninomiya Y, Fu B, Cudahy TJ. 2005. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared radiance-at-sensor data. Remote Sens Environ. 99 (1–2):127–139.
  • Niyeh MM, Jafarirad A, Karami J, Bokani SJ. 2017. Copper, Zinc, and lead mineral prospectivity mapping in the North of Tafresh, Markazi Province, Central Iran. OJG. 07 (04):533–558.
  • Noori L, Pour BA, Askari G, Taghipour N, Pradhan B, Lee C-W, Honarmand M. 2019. Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens. 11(5):495. https://doi.org/10.3390/rs11050495.
  • Parvaz DB. 2014. Oxidation zones of volcanogenic massive sulphide deposits in the Troodos Ophiolite, Cyprus: targeting secondary copper deposits [Ph.d thesis]. University of Exeter. p. 60–110.
  • Pour AB, Hashim M, Hong JK, Park Y. 2019. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: north-eastern Graham Land, Antarctic Peninsula. Ore Geol Rev. 108:112–133.
  • Pour AB, Park Y, Crispini L, Läufer A, Kuk Hong J, Park T-YS, Zoheir B, Pradhan B, Muslim AM, Hossain MS, et al. 2019. Mapping Listvenite occurrences in the damage zones of Northern Victoria Land, Antarctica using ASTER satellite remote sensing data. Remote Sens. 11(12):1408. https://doi.org/10.3390/rs11121408
  • Pour AB, Park T-Y, Park Y, Hong JK, Muslim AM, Läufer A, Crispini L, Pradhan B, Zoheir B, Rahmani O, et al. 2019. Landsat-8, advanced spaceborne thermal emission and reflection radiometer, and WorldView-3 multispectral satellite imagery for prospecting Copper-Gold mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland. Remote Sens. 11:2430. https://doi.org/10.3390/rs11202430.
  • Pour AB, Park Y, Park TS, Hong JK, Hashim M, Woo J, Ayoobi I. 2018. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land. Antarctica. Polar Sci. 16:23–46.
  • Pour AB, Hashim M, Park Y, Hong JK. 2018. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto Int. 33 (12):1281–1306.
  • Pour AB, Park TS, Park Y, Hong JK, Zoheir B, Pradhan B, Ayoobi I, Hashim M. 2018. Application of multi-sensor satellite data for exploration of Zn-Pb sulfide mineralization in the Franklinian Basin, North Greenland. Remote Sens. 10(8):1186.
  • Pour BA, Hashim M, Marghany M. 2014. Exploration of gold mineralization in a tropical region using Earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field, Sarawak, Malaysia. Arab J Geosci. 7 (6):2393–2406.
  • Pour BA, Hashim M. 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev. 44:1–9.
  • Pour BA, Hashim M. 2011. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci. 42(6):1309–1323.
  • Rahaman K, Hassan Q, Ahmed M. 2017. Pan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents. ISPRS Int J Geo-Inf. 6(6):168.
  • Rajabi A, Rastad E, Canet C. 2012. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. Int Geol Rev. 54(14):1649–1672.
  • Rajendran S, Nasir S. 2017. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman. Ore Geol Rev. 88:317–335.
  • Ramezani J, Tucker RD. 2003. The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci. 303(7):622–665.
  • Rani K, Guha A, Kumar KV, Bhattacharya BK, Pradeep B. 2020. Potential use of airborne hyperspectral AVIRIS-NG data for mapping proterozoic metasediments in Banswara, India. J Geol Soc India. 95(2):152–158.
  • Research Systems, Inc. 2008. ENVI tutorials. Boulder (CO): Research Systems, Inc.
  • Rockwell BW, Hofstra AH. 2008. Identification of quartz and carbonate minerals across Northern Nevada using ASTER thermal infrared emissivity data, implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere. 4(1):218–246.
  • Rowan LC, Mars JC. 2003. Lithologic mapping in the Mountain Pass area, California using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens Environ. 84 (3):350–366.
  • Samani BA. 1988. Metallogeny of the Precambrian in Iran. Precambrian Res. 39(1–2):85–106.
  • Sennewald S. 1988. Resurgent Cauldrons and their mineralization between Narigan, Esfordi, Kushk, and Seh Chahoon, Central Iran. Int J Eng. 1(2):149–161.
  • Sgavetti M, Pompilio L, Meli S. 2006. Reflectance spectroscopy (0.3–2.5 μm) at various scales for bulk-rock identification. Geosphere. 2 (3):142–160.
  • Sheikhrahimi A, Pour AB, Pradhan B, Zoheir B. 2019. Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: a case study from the Sanandaj-Sirjan Zone, Iran. Adv Space Res. 63(10):3315–3332.
  • Siljestrom PA, Moreno A, Vikgren K, Caceres LM. 1997. The application of selective principal components analysis (SPCA) to a Thematic Mapper (TM) image for the recognition of geomorphologic configuration. Int J Remote Sens. 18(18):3843–3852.
  • Singh A, Harrison A. 1985. Standardized principal components. Int J Remote Sens. 6(6):883–896.
  • Singhal S, Gupta RP. 2010. Applied hydrogeology of fractured rocks. 2nd ed. Dordrecht, Netherlands: Kluwer Academic Publishers (Springer); p. 428.
  • Stöcklin J. 1968. Structural history and tectonics of Iran: a review. Bull Am Assoc Pet Geol. 52:1229–1258.
  • Sun Y, Tian S, Di B. 2017. Extracting mineral alteration information using Worldview-3 data. Geosci Front. 8(5):1051–1062.
  • Taylor RD, Leach DL, Bradley DC, Pisarevsky SA. 2009. Compilation of mineral resource data for Mississippi Valley-type and clastic-dominated sediment-hosted lead-zinc deposits. USGS Open-File Report 2009-1297, p. 42.
  • Weyermann J, Schlapfer D, Hueni A, Kneubuhler M, Schaepman M. 2009. Spectral Angle Mapper (SAM) for anisotropy class indexing in imaging spectrometry data. Imaging Spectrometry XIV; Vol. 7457. International Society for Optics and Photonics. p. 74570B.
  • Xu Y, Meng P, Chen J. 2019. Study on clues for gold prospecting in the Maizijing-Shulonggou area, Ningxia Hui autonomous region, China, using ALI, ASTER and WorldView-2 imagery. J Vis Commun Image Represent. 60:192–205.
  • Yang M, Ren G, Han L, Yi H, Gao T. 2018. Detection of Pb–Zn mineralization zones in west Kunlun using Landsat 8 and ASTER remote sensing data. J Appl Rem Sens. 12(02):1.
  • Zoheir B, El-Wahed MA, Pour AB, Abdelnasser A. 2019. Orogenic gold in transpression and transtension zones: field and remote sensing studies of the Barramiya–Mueilha Sector, Egypt. Remote Sens. 11(18):2122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.